PSZ 19:16 (Pind. 1/07)

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS ,	POSTGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name : FARHAN	<u>G ERFAN</u>
Date of birth : <u>5 SEPTEN</u>	<u>ABER 1985</u>
Title : <u>A PRACT</u> <u>RENOVA</u>	TICAL APPROACH TOWARDS SUSTAINABLE
Academic Session : <u>2010/2011</u>	
I declare that this thesis is classifi	ed as :
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
	I agree that my thesis to be published as online open access (full text)
l acknowledged that Universiti 1	eknologi Malaysia reserves the right as follows:
	of Universiti Teknologi Malaysia. eknologi Malaysia has the right to make copies for the purpose
of research only. 3. The Library has the right	to make copies of the thesis for academic exchange.
S	Certified by : PROF. MADYA DR. ARHAM BIN ABDULLAH T.MBALAN PENGARAH INOVASI PRAT INDUSTRI TECHNOVATION PARK LUVERSTITTEKNOLOGI MALAYSIA
SIGNATURE	SIGNATURE OF SUPERVISOR
J14902015	ASSOC. PROF. DR. ARHAM ABDULLAH
(NEW IC NO. /PASSPORT	NO.) NAME OF SUPERVISOR

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I hereby declare that I have read this project report and in my opinion this project report is sufficient in terms of scope and quality for the award of the degree of Master of Science (Construction Management)"

> PROF. MADYA DR. ARHAM BIN ABDULLAH T.MBALAN PENGARAH INOVASI PUSAT INOVASI DAN KOMERSIALISASI PUSAT INDUSTRI, TECHNOVATION PARK U UNERSTITTEKNOLOGI MALAYSIA 81310 UTM JOHOR BAHRU, JOHOR

Signature

Name of Supervisor : Date :

:

ASSOC.PROF. DR. ARHAM ABDULLAH 6 JULY 2011

A PRACTICAL APPROACH TOWARDS SUSTAINABLE RENOVATION

FARHANG ERFAN

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JULY 2011

I declare that this master project report entitled "A Practical Approach towards Sustainable Renovation" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any degree.

Signature : FARHANG ERFAN Name : 5 JULY 2011 Date :

To my beloved Mother and Father

ACKNOWLEDGEMENT

First and foremost, I am grateful to God for helping me throughout the completion of this project.

I am sincerely grateful to my supervisor, Assoc. Prof. Dr. Arham Abdullah, for his continuous support, suggestions and immeasurable contribution to my project. He always provided me guidance and feedbacks in this project.

Deep appreciation goes to my dear family especially my beloved parents, brother and sister for their encouragement and supports during my study. I am also very thankful to my friends especially Morteza Ghaempanah for his advice, guidance and motivation. Without their help, I would not have completed my project.

Lastly, thanks are due to the people that I did not mention their name for their assistance and encouragement.

ABSTRACT

Due to the negative environmental impacts of existing buildings on one hand and energy crises on the other hand, the need for sustainable renovation was felt more than before. Different countries throughout the world have launched several regulations and standards to address the need to minimize the burden of existing buildings on energy resources but the lack of awareness in different strata of the society as well as limited comprehensible numerical energy analyses of existing buildings have troubled the realization of this aim. The present research seeks to identify the importance of environmental aspects of green renovation and obstacles and barriers of its implementation in Malaysia. Apart from these, by utilizing Building Information Modeling tools the study uses a computer simulation model of an existing office building to compare different alternatives of renovation options and their effect on heating and cooling loads. For this purpose, the model was analyzed separately with different alternate building envelope components including the ones with green features. The results were then compared and the energy efficiency of different cases was tabulated. The study results show that a great deal of energy can be saved by renovating the existing buildings with special attention to green alternatives and conditions. The outcome of the energy analyses can perform as a decision-making basis for the professionals to select proper green renovation alternatives considering the amount of energy saved, their technical capabilities and limitations.

ABSTRAK

Akibat daripada impak negatif terhadap alam sekitar daripada bangunan sedia ada dan krisis tenaga, maka keperluan untuk pengubahsuaian lestari telah diutamakan berbanding sebelumnya. Banyak negara di dunia telah melancarkan beberapa peraturan dan piawaian dalam mengutarakan keperluan untuk meminimumkan penggunaan sedia ada bagi sumber tenaga di dalam bangunan. Namun, kekurangan kesedaran dalam pelbagai lapisan masyarakat serta kekurangan analisis tenaga di dalam bangunan sedia ada secara keseluruhan telah memberi masalah dalam merealisasikan tujuan tersebut. Kajian yang dijalankan adalah untuk menentukan kepentingan pengubahsuaian lestari berdasarkan aspek alam sekitar dan halangan dalam mengimplimentasikannya di Malaysia. Kajian ini juga menggunakan model simulasi berkomputer 'Building Information Modelling' pada bangunan sediada untuk membandingkan beberapa pilihan terhadap kaedah pengubahsuaian dengan mengambilkira kesan terhadap bebanan kepanasan dan kesejukan. Untuk tujuan, model tersebut telah dianalis secara berasingan dengan mengambilkira keadaan komponen bangunan yang berbeza termasuk yang mempunyai ciri hijau. Seterusnya keputusan analisis telah dibandingkan dan kecekapan tenaga dalam pelbagai kes telah dijadualkan. Hasil kajian menunjukkan bahawa penggunaan tenaga dapat dijimatkan sekiranya pengubahsuaian hijau dilaksanakan pada bangunan sedia ada. Analisa tenaga yang dihasilkan boleh digunakan oleh pihak professional yang terlibat dalam membuat keputusan untuk memilih alternatif pengubahsuaian hijau yang sesuai dengan mengambil kira jumlah tenaga yang tersimpan, dan kemampuan teknikal.

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xviii

INTRODUCTION		1
1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Aim of the Research	4
1.4	Objectives of the Research	4
1.5	Scope of the Study	4
1.6	Overview of Research Methodology	5
1.7	Expected Findings	6

LITEI	RATUF	RE RIVIEW ON RENOVATION				
PRAC	TICES	5	7			
Introdu	uction		7			
2.2	2 Renovation					
	2.2.1	Definition of Renovation	7			
	2.2.2	Important Positions of Refurbishment And				
	Renovation					
	2.2.3 Potentials for Efficiency by Renovation					
	2.2.4 Renovation and Refurbishment Scenario in Malaysia					
	2.2.5	Policies and Legislation Related To				
		Refurbishment Projects In Malaysia	12			
2.3	Sustair	nable Development	13			
	2.3.1	Elements of Sustainable Development	14			
		2.3.1.1 Economic Aspects	15			
		2.3.1.2 Social Aspects	16			
		2.3.1.3 Environmental Aspects	16			
	2.3.2	Sustainable Design	17			

		2.3.1.3 Environmental Aspects	16
	2.3.2	Sustainable Design	17
		2.3.2.1 Sustainable Design Principles	17
2.4	Enviro	onmental Hazards	18
	2.4.1	Global Warming and Climate Change	19
	2.4.2	Global Warming and Carbon Dioxide	
		Emissions	20
	2.4.3	Carbon Dioxide Emissions and Energy Use	21
	2.4.4	Energy and Carbon Dioxide Emission	
		Considerations in the Urban Planning	
		Process in Malaysia	21
		2.4.4.1 Spatial Planning Framework in	
		Malaysia	21
		2.4.4.2 Absence of Energy Consumption and	ł

2.1

 $\rm CO_2$ Emission Consideration 22 viii

2.5	The In	nportance of Greening Existing Buildings	22
2.5.1	Malaysia's Movement toward Greening Existing		
	Build	ing	24
		2.5.1.1 The application of Green Building Index	X
		(GBI)	24
		2.5.1.2 Objectives of the GBI	25
		2.5.1.3 Tiers of GBI Accreditation	25
		2.5.1.4 GBI Rating System	26
		2.5.1.5 GBI Classification	27
		2.5.1.6 GBI Rating Tools for Non- Residential	28
		2.5.1.7 New Rating Tool of Green Building	
		Index (GBI) for Existing Buildings	29
2.6	Barrie	rs to Sustainable Renovation	32
	2.6.1	What are the Primary Concerns of	
		Renovators?	32
	2.6.2	Reasons for not Using Sustainable	
		Products in Renovations	33
	2.6.3	What Is the Best Way for Local	
		Government to Encourage	
		Sustainable Renovations?	35
THE A	APPLI	CATION OF BULDING INFORMATION	
MOD	ELLIN	G IN RENOVATION	36
3.1	Buildi	ng Information Modeling	36
3.2	Applic	cation of Autodesk Ecotect Software	37
3.3	Stayin	g Competitive with BIM Solutions from	
	Autod	esk	37
	~ .		

3.4	Sustainable Design Analysis and Building	
	Information Modeling	38
3.5	BIM for Renovation	39
3.6	How to Implement BIM	40

	3.6.1	The Benefits of Using BIM to Improve	
		Building Performance	41
3.7	Signif	icance of Energy and Performance Simulation	on44
	3.7.1	The Output	45
		3.7.1.1 Heating and Cooling Loads	46
RESI	EARCH	I METHODOLOGY	48
4.1	Introd	uction	48
4.2	Excav	ation	48
4.3	Litera	ture Review	49
4.4	Data (Collection	49
	4.4.1	Interview	49
		4.4.1.1 The Seven Stages of an Interview	
		Investigation	50
		4.4.1.2 Semi Structured Interview	51
	4.4.2	Interview with Expert Panels	51
		4.4.2.1 Qualitative Data Analysis	52
	4.4.3	Implementing BIM for a Proposed Case	
		Study	54
DAT	A COLI	LECTION AND ANALYSIS	55
5.1	Introd	uction	55
5.2	Objec	tive 1: The Importance of Sustainable	
	Renov	vation in Terms of Environmental Issues	55
	5.2.1	Environmental Changes in Recent Years	56
	5.2.2	The Roles of Authorities to Mitigate the	
		Destructive Environmental Impacts of	
		Buildings	57
5.3	Objec	tive2: Obstacles in Performing Sustainable	
	Renov	vation in Malaysia	59
	5.3.1	Motivations for Pursuing Green Goals	64

	5.3.2	Promotions on Construction of Green	
		Buildings	65
	5.3.3	Perception that Green Costs More: Green	
		Building Cost Studies and Reports	67
	5.3.4	Conventional Green Renovation Measures	68
5.4	Objec	tive 3: Implementing BIM in Renovation	
	Practi	ices	70
	5.4.1	Introduction	70
	5.4.2	Creating the 3D Model with Revit Architect	ure
		Software	71
	5.4.3	Exporting gbXML File from Revit	72
	5.4.4	Importing a gbXML File into Ecotect	
		Analysis	72
	5.4.5	Loading a Weather File in Ecotect Analysis	74
	5.4.6	Material Assignment	74
	5.4.7	Zone Management	79
		5.4.7.1 Zones	79
		5.4.7.2 Thermal Zones	80
		5.4.7.3 Non-Thermal Zones	80
		5.4.7.4 Zones Specifications	81
	5.4.8	Thermal Conditions	82
		5.4.8.1 Types of HVAC Systems	82
		5.4.8.2 Comfort Band / Thermostat Range	84
		5.4.8.3 Occupancy (No. of People)	84
		5.4.8.4 Activity	85
		5.4.8.5 Clothing	85
		5.4.8.6 Air Infiltration Rate	85
		5.4.8.7 Hours of Operation	86
	5.4.9	Thermal Analysis	86
		5.4.9.1 Calculating Heating and Cooling	
		Loads for Case 1	87

	5.4.9.2 Passive Gains Breakdown	89
	5.4.9.3 Heating and Cooling Loads	of
	Case 2(With Changing the W	Valls)91
	5.4.9.4 Heating and Cooling Loads	
	Analysis of Case 3 (With	
	Changing the Windows)	94
	5.4.9.5 Heating and Cooling Loads	for
	Case 4 (With Changing the	
	Ceilings)	96
	5.4.9.6 Heating and Cooling Loads	for
	Case 5 (With Changing All	Material
	Alternatives)	99
	5.4.9.7 Heating and Cooling Loads	for
	Case 6 (With Not Only Char	nging
	All Material Alternatives Bu	at Also
	Some Conditions)	100
5.5	Summary	102
CON	ACT LISTON AND DECOMMENDATIONS	102
	NCLUSION AND RECOMMENDATIONS	103
6.1	Introduction	103
6.2	Conclusions	103

6.2.1

	Malaysia	104
6.2.3	Objective 3: To Develop A Comparative Ca	ise
	Study of Thermal Analysis between an	
	Outdated Existing Building and a Renovated	105

Obstacles of Sustainable Renovation in

Objective 1: To Identify the Importance of

104

Sustainable Renovation in Terms of

6.2.2 Objective 2: To Identify Problems and

Environmental Issues

6.3 Further Renovation Ideas for the Case Study 105

6.4	Recommendations for Further Studies	107
REFE	RENCES	109

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	GBI Classification	27
2.2	Maximum Points Allocation for Residential New Construction (RNC)	28
2.3	Maximum Points Allocation for Non-Residential New Construction (NRNC)	29
2.4	GBI Assessment Criteria for Non-Residential Existing Building (NREB)	31
5.1	Conventional Green Renovation Measures	69
5.2	Thermal Properties of Materials Used for This Study	75
5.3	Technical Properties of the Concrete Slab Floor Components	75
5.4	Technical Properties of the Brick Concrete Block Plaster Wall	76
5.5	Technical Properties of the Solid Core- Oak Timber Door	77
5.6	Technical Properties of the Single Glazed Aluminum Frame Window	77
5.7	Technical Properties of the Suspended Concrete Ceiling	78
5.8	Monthly Cooling Loads for Case 1	89
5.9	Passive Gains Breakdown Graph for Case 1	91
5.10	Properties of Brick Concrete Block Plaster Wall with Insulation	92

5.11	Monthly Cooling Loads of Case 2 and Case 1	93
5.12	Properties of Double Glazed Aluminum Frame Window	94
5.13	Monthly Cooling Loads of Case 3 and Case 1	96
5.14	Properties of Suspended Concrete Ceiling with Insulation	97
5.15	Monthly Cooling Loads of Case 4 and Case 1	98
5.16	Monthly Cooling Loads of Case 5 and Case 1	100
5.17	Monthly Cooling Loads of Case 5, 6 and Case 1	102

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Scheme of Sustainable Development, At the Confluence of Three Preoccupation	14
2.2	Distribution of Office Buildings in Kuala Lumpur	23
2.3	Distribution of Commercial Floor Areas in Kuala Lumpur	24
2.4	An analogy between overall points score of assessment criteria for (NRNC) and (NREB)	32
2.5	Respondent's Concern about Renovation	33
3.1	Sample of Heating and Cooling Loads Graph	47
5.1	3D Geometry Model of the Case Study in Revit	72
5.2	Importing XML Data File into Ecotect Analysis Software	73
5.3	Visualize view of the imported XML file in Ecotect Analysis	73
5.4	Layers of Concrete Slab Floor	76
5.5	Layers of Brick Concrete Block Plaster	76
5.6	Layers of Solid Core- Oak Timber Door	77
5.7	Layers of Single Glazed Aluminum Frame Window	78
5.8	Layers of Suspended Concrete Ceiling	78

5.9	3D View of Zones in Ecotect Analysis	81
5.10	Visualise View of Zones in Ecotect Analysis	82
5.11	Monthly Heating and Cooling Loads for Case 1	88
5.12	Six Heat Transfer Mechanisms in a Zone	90
5.13	Passive Gains Breakdown Graph for Case 1	90
5.14	Layers of Brick Concrete Block Plaster Wall with Insulation	92
5.15	Monthly Cooling Loads for Case 2	93
5.16	Layers of Double Glazed Aluminum Frame Window	95
5.17	Monthly Heating and Cooling Loads for Case 3	95
5.18	Layers of Suspended Concrete Ceiling with Insulation	97
5.19	Monthly Heating and Cooling Loads for Case 4	98
5.20	Monthly Heating and Cooling Loads for Case 5	99
5.21	Monthly Heating and Cooling Loads for Case 6	101

LIST OF ABBREVIATIONS

ACEM	Association of Consulting Engineers Malaysia
BCA	Building Construction Authority
BIM	Building Information Modeling
CIDB	Malaysian Construction Industry Development Board
CREAM	Construction Research Institute of Malaysia
GBI	Green Building Index
GBXML	Green Building XML
GHG	Green House Gas
HVAC	Heating Ventilation and Air Conditioning
IEA	International Energy Agency
IEM	Institution of Engineers Malaysia
IEQ	Indoor Environmental Quality
IPCC	Intergovernmental Panel on Climate Change
КЕТНА	Ministry of Energy, Green Technology and Water
КРКТ	Ministry of Housing and Local Government
LEO	Low Energy Office
MEWC	Ministry of Energy Water and Communication
NGO	Non-Governmental Organization

NPP	National Physical Plan
NREB	Non-Residential Existing Building
NRNC	Non-Residential New Construction
PAM	Pertubuhan Akitek Malaysia
РТМ	Pusat Tenaga Malaysia
PWD	Malaysian Public Works Department
RNC	Residential New Construction
UHI	Urban Heat Island
UNEP	United Nations Environment Program
UNFCCC	United Nations Framework Convention on Climate Change
USGBC	U.S. Green Building Council
UTM	Universiti Teknologi Malaysia
WH	Watt-hours
ZEO	Zero Emission Office

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The world today is suffering from many environmental issues. The scale of environmental problems has increased from local and regional to global. Unplanned and unsustainable development, rapid industrialization, urbanization, and other technological developments especially in recent decades have contaminated air, water and soil quality and therefore have interfered with the basic needs of the society. Public awareness of environmental issues such as global warming, acid rain and ozone depletion has increased substantially over the last few years (Harris, 1999, Sonnemann, 2004).

While buildings provide countless benefits to society, they also have significant impacts on the environment especially the ones that have been constructed without any sustainability considerations. In Kuala Lumpur, Malaysia alone; 85% of whole stocks of office buildings are existing ones and only 15% are from new construction. In the life cycle of a building various natural resources are consumed including energy resources, water, land, and minerals and many kinds of pollutants are released back to the environment. These environmental inputs and outputs result in significant environmental consequences including global warming, acidification, air pollution, resource depletion, and waste disposal (Li, 2006, Harris, 1999).

Some of the facts that ought to be mentioned include the following:

- Rapidly increasing prices of the main energy carriers, natural gas and electricity, provide a strong motivation towards improving the energy performance of the housing stock.
- The building sector's energy consumption is significantly high in comparison to other sectors. In the U.S., buildings account for 39 percent of the total primary energy consumption and 70 percent of the electricity consumption (Wang, 2005a).
- Building construction is believed to consume around half of all the resources taken from nature (Assefa, 2007).
- The built environment contributes to global warming by the release of greenhouse gases into the atmosphere both directly as a result of energy and indirectly by the use of manufactured products. It is estimated that the built environment accounts for about 40 percent of world greenhouse gas emissions (Assefa, 2007, Reilly, 1997).
- In many parts of the world fresh water is an increasingly scarce resource. Buildings account for 16 percent of the water used annually worldwide (Public Technology Inc., 1996).

This trend is still going on due to the existing buildings; the aging and deteriorating housing stock increases the need for renovation and could at the same time be used for increasing the energy performance. As the demand for housing is not expected to decrease, extending the lifetime of the existing housing stock represents a far cheaper option than building new houses. In addition to these two, sustainable renovation may also help to make a beneficial environment for housing renovation.

In most developed countries the need for sustainable and green renovation has been felt in their Green Buildings Rating Systems as a tool for greening existing buildings. In Malaysia also a new GBI hand out has been launched for Non-Residential Existing Building in 26 of April 2010.

A comparative study between a renovated building considering green features and the existing situation of the building should be implemented to illustrate the amount of energy consumption reduction resulting from this renovation.

1.2 Problem Statement

The renovation market has faced growing needs worldwide in the last recent years according to the change to social structures and an increasing awareness of the need for sustainability.

Many home owners suffer for years, living in houses that are hot and humid (in Malaysia, and other places perchance cold and drafty), unhealthy, uncomfortable and outdated with having high air conditioning bills and many problems at the time of selling their houses and on the other hand the old buildings stocks have disastrous impacts on the environment. In the inauguration ceremony of GBI Rating tool for Non-Residential Existing Building on 26 of April 2010, Malaysian Institute of Architects (PAM) president, Yang Berhormat Dato' Sri Peter Chin Fah Kui stated that "Some changes are imminent, such as rising energy costs, reduced energy subsidies, and increased international market expectation on building performance, and as such there is an urgent need to ensure that our construction and property development industry is future-ready when faced with these demands and challenges."

These facts show the importance of renovation of old buildings considering sustainable features according to the current green construction technology. Leafing

through literature regarding green renovation shows that few studies have been conducted to put renovation theories into practice. This study seeks to find a practical approach to green renovation to urge the homeowners in one hand and the facilitators and contractors on the other hand to consider green aspects of renovation in their practices.

1.3 Aim of the Research

This research aims to propose a practical approach towards sustainable renovation in Malaysia.

1.4 Objectives of the Research

The objectives of the research are as follows:

- 1. To identify the importance of sustainable renovation in terms of environmental issues.
- 2. To identify problems and obstacles of sustainable renovation in Malaysia.
- 3. To develop a comparative case study of thermal analysis between an outdated existing building and a renovated building.

1.5 Scope of the Study

The current research covers general obstacles and problems in Malaysian green building renovation industry. Comparative case study for thermal analysis with

different envelope elements alternatives of an existing institutional office building in Johor-Malaysia will be carried out in the second phase.

1.6 Overview of Research Methodology

Phase one

For the first stage, the investigation started and obtained through the literature review and the data obtained from different sources including governmental statistics, books, magazines, articles, journals, websites, and other published information supporting environmental issues relevant to outdated existing buildings.

Phase two

This phase consisted of preparing and collecting the data through interviews with experts to validate the findings through the previous literature review.

The data was collected from the experts such as architects, engineers, contractors, energy efficiency campaign leaders, consultants, developers, and others who have done some project related to sustainable renovation.

Phase three

For the accomplishment of the third objective a proposed outdated institutional office building in UTM (B11) was analyzed thermally with different envelope design alternatives with the aid of Autodesk Ecotect Analysis software that is a comprehensive, concept-to-detail sustainable design analysis tool, providing a wide range of simulation and analysis functionality on a single platform. In order to do this a 3D geometry model of the building was developed in Revit Architecture Software often referred to as simply Revit which is a Building Information Modelling software developed by Autodesk. It allows the user to design with both parametric 3D modelling and 2D drafting elements.

The exported Green Building XML (gbXML) model from Revit imported to Ecotect Analysis performing the thermal analysis such as heating and cooling loads calculations and passive gains breakdown. The model was analysed initially with its existing state and then with the proposed green renovated features.

The comparison between these two models in terms of consumption of energy in the heating and cooling loads criteria, illustrates the effectiveness of different envelope alternatives in a renovation.

1.7 Findings

The results of this research clarify the importance of sustainable renovation, obstacles and problems related to sustainable renovation practices in Malaysia and the feasibility of green renovation in terms of energy consumption reduction benefits based on comparative study.