Author :	Yashar Arvin
Matrix No:	MA81045
Pass. No :	U16353051
Nationality:	IRAN

Title of Thesis : Improvement of Structural Stability for Multi –Storey Building by Using Composite Column and Cable Connection

Name of Supervisor : Assoc.Prof.Dr. Suhaimi Abu Bakar

Panel examiners name :

Dr. Redzuan Abdulah Prof. Datin Dr. Nasly Mohamed Ali Assoc. Prof. Dr. Abd Kadir Marsono

Brief Content of the Thesis :

The methods are using during issue are subjected to build safe and economical structures by limitation for lateral deflection against seismic load or motion effectively and increase the stability of structure. Using composite column as a flexible part of structure to absorb energy from action and reaction of loads in components are assumed for first part of issue and cable connection as active spring part of structure as second part of thesis. The both methods are proposed to study effect of P-Delta method by non-linear analysis with SAP2000 to comparing existing methods with same loads. The results from SAP2000 are appeared effect of composite column and cable connection with small lateral deflection compare with non-composite and rigid connection.

Table of Contents

СНАРТЕ	R TITLE	PAGE
	Declaration	ii
	Dedication	iii
	Acknowledgements	iv
	Abstract	v
	Abstrak	vi
	Table of Contents	vii
	List of Tables	Х
	List of Figures	xii
1	Introduction	
1.1	General	1
1.2	Statement of Problem	2
1.3	Aim and Objective	3
1.4	Scope of project	4
1.5	Organization of This Report	5
2	Literature Review	
2.1	General	6
2.2	Existing Methods for Improvement of Structural Stability	8
2.2.1	Steel Plate Shear Walls	8
2.2.1.1	Strip Model	9
2.2.2	Steel Bracing Model	10

CHAPTER	R TITLE	PAGE
2.3	Composite Column	10
2.4	Stability and the Effective Length for Column	12
2.5	Existing Analytical Modeling	12
2.5.1	Linear Centerline Model	13
2.5.2	Elastic Model with Panel Zone	13
2.5.3	Nonlinear Centerline Model	14
2.5.4	Nonlinear Model with Panel Zone	15
2.6	Analytical Modeling of Panel Zone	17
2.7	Analytical Modeling of Beam-connection	17
2.8	Active Control Cable	19
2.9	Isolation System for Vibration Stay Cables Control	21
3	Analysis and Modeling of Proposed Composite column	
3.1	Composite Columns	23
3.2	Advantage of Using Composite Material	25
3.3	Disadvantages of Using Composite Column	26
3.4	Flexible Column by Using Steel and Concrete	26
	Components without Cable	
3.4.1	Data Collection	27
3.4.2	Data Analysis	28
3.4.2.1	First Analysis	28
3.4.2.1.1	Critical Lateral Load and Deflection (P-Delta effect)	28
3.4.2.1.2	Critical Compression Load and 20% of Critical Lateral	37
	Load, Deflection	
3.4.2.2	Second Analysis	54
3.5	Flexible Column by Using Steel and Concrete Components	68
	with Cable(Prestress Composite Column)	
3.6	Discussion of results	82

TITLE

4	Analysis and Modeling of multi-storey building	
	with Cable Connection	
4.1	Cable Connection	85
4.2	Spherical Link	86
4.3	Circular Support with Cable	87
4.4	Mechanism of Cable Connection	87
4.5	Advantage of Using Cable Connection	88
4.6	Disadvantages of Using Cable Connection	88
4.7	Presume Multi-Storey Building Properties	89
4.8	Data Analysis for Frame	90
4.8.1	P-Delta Analysis for Frame without Prestress Cable(First Analysis)	90
4.8.2	P-Delta Analysis for Frame with Proposed Prestress Cables in Connection(Second Analysis)	97
4.8.3	Third Analysis	105
4.9	Rigid Connection	112
4.10	Discussion of the Analysis Results	120
5	Conclusions	
5.1	Composite Column	122
5.2	Cable Connection	123
6	References	124

List of Tables

PAGE

Table 3.1	Critical Lateral Load Steel Section (ST275 UC305x305x240)	36
Table 3.2	Critical Lateral Load Concrete Section (355x321)	36
Table 3.3	Critical Lateral Load Composite Section(Steel 305x305x240	37
	Top, Bottom ,Concrete 355x321 8#18 at middle)	
Table 3.4	Critical (Compression and 20% Lateral Load)	53
	Steel Section (ST275 UC305x305x240)	
Table 3.5	Critical (Compression and 20% Lateral Load)	53
	Concrete Section (355x321 8#18)	
Table 3.6	Critical (Compression and 20% Lateral Load)Composite Section	53
	(Steel 305x305x240top, bottom ,Concrete 355x321 at middle	e)
Table 3.7	Maximum Compression Load and 20% Critical Lateral	67
	Load ,Steel Section (ST275 UC305x305x240)	
Table 3.8	Maximum Compression Load and 20% Critical Lateral Load,	67
	Composite Section (Steel 305x305x240top, bottom and	
	Concrete 355x321 at middle Without Cable)	
Table 3.9	Cable Strain for Composite Section (Steel 305x305x240	68
	Top, Bottom and Concrete 355x321 at middle With Cable)	
Table 3.10	Maximum Compression Load and 20% Critical Lateral Load,	78
	Composite Section With Cable	

TITLE

Table NO.

Table NO.TITLE

Table 3.11	Deflection for Steel Section (UC 305x305x240)Under	82
	Maximum Compression Load ,20% Critical Lateral Load	
Table 3.12	Comparing Lateral Deflection for Steel Section (305x305x240),	84
	Composite Column Without Cable and With Cable	
Table 4.1	Columns (UC305x305x240) Under Axial Forces (First Analysis)	97
Table 4.2	Beams (UB305x165x54) Under Axial Forces (First Analysis)	97
Table 4.3	Columns (UC305x305x240) Under Gravity Load with Using	104
	Cable in Connection (Second Analysis)	
Table 4.4	Beam (UB305x165x54) Under Gravity Load with Using	104
	Cable in Connection (Second Analysis)	
Table 4.5	Columns (UC305x305x240)Under Gravity Load and	112
	Lateral Load with Cable Connection (Third Analysis)	
Table 4.6	Beam (UB305x165x54) Under Gravity Load and Lateral	112
	Load with Cable Connection (Third Analysis)	
Table 4.7	Column (UC305x305x240) Under Gravity Load and	120
	Rigid Connection	
Table 4.8	Beam (UB305x165x54) Under Gravity Load and	120
	Rigid Connection	

LIST OF FIGURES

TITLE

Figure 2.1	Strip model as shear wall	9
Figure 2.2	H Section Steel-Concrete Composite Column	11
Figure 2.3	Scissors Model	14
Figure 2.4	Nonlinear Centerline Model	15
Figure 2.5	Shi Model	16
Figure 2.6	Krawinkler Model	16
Figure 2.7	Moment –Rotation Behavior of Panel Zone	17
Figure 2.8	Simple Analytical Modeling of the Moment Connection	18
Figure 2.9	Brittle Fracture in Welded Part	18
Figure 2.10	Analytical Modeling of Moment Connection	19
Figure 2.11	Stay Cable With Using Damper For Isolation System	22
Figure 3.1.	Proposed Composite Column with Pretension Cable	24
Figure 3.2	Lateral Deflection with Lateral Load	28
Figure 3.3	Critical lateral load and deflection for L=3000(steel section)	29
Figure 3.4	Critical lateral load and deflection for L=5000(steel section)	29
Figure 3.5	Critical lateral load and deflection for L=7000(steel section)	30
Figure 3.6	Critical lateral load and deflection for L=3000(Concrete Section)	30
Figure 3.7	Critical lateral load and deflection for L=5000(Concrete Section)	31
Figure 3.8	Critical lateral load and deflection for L=7000(Concrete ection)	31
Figure 3.9	Composite Section, L=3000 mm Steel section, Top	32
Figure 3.10	Composite Section, L=3000 mm Concrete section, Middle	32
Figure 3.11	Composite Section, L=3000 mm Steel section, Bottom	33

TITLE

Figure 3.12	Composite Section, L=5m Steel section, Top	33
Figure 3.13	Composite Section, L=5m Concrete section, Middle	34
Figure 3.14	Composite Section, L=5m Steel section, Bottom	34
Figure 3.15	Composite Section, L=7m Steel section, Top	35
Figure 3.16	Composite Section, L=7m Concrete section, Middle	35
Figure 3.17	Composite Section, L=7m Steel section, Bottom	36
Figure 3.18	Critical(Compression ,20% lateral load),L=3m steel section	38
Figure 3.19	Critical(Compression, 20% lateral load),L=5m steel section	39
Figure 3.20	Critical(Compression, 20% lateral load),L=7m steel section	40
Figure 3.21	Critical(Compression, 20% lateral load),L=3m Concrete Section	41
Figure 3.22	Critical(Compression, 20% lateral load),L=5m Concrete Section	42
Figure 3.23	Critical(Compression, 20% lateral load),L=7m Concrete Section	43
Figure 3.24	Critical(Compression ,20% lateral load),L=3m Composite,Top	44
Figure 3.25	Critical(Compression ,20% lateral load),L=3m Composite,Middle	45
Figure 3.26	Critical(Compression ,20% lateral load),L=3m Composite ,Bottom	46
Figure 3.27	Critical(Compression ,20% lateral load),L=5m Composite,Top	47
Figure 3.28	Critical(Compression ,20% lateral load),L=5m Composite,Middle	48
Figure 3.29	Critical(Compression ,20% lateral load),L=5m Composite,Bottom	49
Figure 3.30	Critical(Compression ,20% lateral load),L=7m Composite,Top	50
Figure 3.31	Critical(Compression ,20% lateral load),L=7m Composite,Middle	51
Figure 3.32	Critical(Compression ,20% lateral load),L=7m Composite,Bottom	52
Figure 3.33	Maximum Compression Load and 20% Critical lateral load,L=3m	55
	steel section	
Figure 3.34	Maximum Compression Load and 20% Critical lateral load,L=5m	56
	steel section	
Figure 3.35	Maximum Compression Load and 20% Critical lateral load,L=7m	57
	steel section	

FIGURE NO. TITLE

Figure 3.36	Maximum Compression Load and 20% Critical Lateral Load,	58
	L=3m Composite Section ,Top part	
Figure 3.37	Maximum Compression Load and 20% Critical Lateral Load,	59
	L=3m Composite Section ,Middle part	
Figure 3.38	Maximum Compression Load and 20% Critical Lateral Load,	60
	L=3m Composite Section ,Bottom part	
Figure 3.39	Maximum Compression Load and 20% Critical Lateral Load,	61
	L=5m Composite Section ,Top part	
Figure 3.40	Maximum Compression Load and 20% Critical Lateral Load,	62
	L=5m Composite Section ,Middle part	
Figure 3.41	Maximum Compression Load and 20% Critical Lateral Load,	63
	L=5m Composite Section ,Bottom part	
Figure 3.42	Maximum Compression Load and 20% Critical Lateral Load,	64
	L=7m Composite Section ,Top part	
Figure 3.43	Maximum Compression Load and 20% Critical Lateral Load,	65
	L=7m Composite Section ,Middle part	
Figure 3.44	Maximum Compression Load and 20% Critical Lateral	66
	Load,L=7m Composite Section ,Bottom part	
Figure 3.45	Maximum Compression Load and 20% Critical Lateral	69
	Load,L=3m Composite Section ,Top part (With Cable)	
Figure 3.46	Maximum Compression Load and 20% Critical Lateral	70
	Load,L=3m Composite Section ,Middle part(With Cable)	
Figure 3.47	Maximum Compression Load and 20% Critical Lateral	71
	Load,L=3m Composite Section ,Bottom part (With Cable)	
Figure 3.48	Maximum Compression Load and 20% Critical Lateral	72
	Load,L=5m Composite Section ,Top part (With Cable)	
Figure 3.49	Maximum Compression Load and 20% Critical Lateral	73
	Load,L=5m Composite Section ,Middle part (With Cable)	

FIGURE NO. TITLE

Figure 3.50	Maximum Compression Load and 20% Critical Lateral	74
	Load,L=5m Composite Section ,Bottom part (With Cable)	
Figure 3.51	Maximum Compression Load and 20% Critical Lateral	75
	Load,L=7m Composite Section ,Top part (With Cable)	
Figure 3.52	Maximum Compression Load and 20% Critical Lateral	76
	Load,L=7m Composite Section ,Middle part (With Cable)	
Figure 3.53	Maximum Compression Load and 20% Critical Lateral	77
	Load,L=7m Composite Section ,Bottom part (With Cable))
Figure 3.54	Maximum Compression Load and 20% Critical Lateral	79
	Load from Composite Section ,L=3m Steel Section	
Figure 3.55	Maximum Compression Load and 20% Critical Lateral	80
	Load from Composite Section ,L=5m Steel Section	
Figure 3.56	Maximum Compression Load and 20% Critical Lateral	81
	Load from Composite Section ,L=7m Steel Section	
Figure 4.1	Proposed Cable Connection for Multi-Storey Building	85
Figure 4.2	Proposed. Spherical Link	86
Figure 4.3	Proposed Circular Support	87
Figure 4.4	Mechanism of cable connection	87
Figure 4.5	Proposed Cable Connection 3 Floors Frame	90
Figure 4.6	Columns (UC305x305x240) at Level 3 (First Analysis)	91
Figure 4.7	Columns (UC305x305x240)at Level 2, (First Analysis)	92
Figure 4.8	Columns (UC305x305x240)at Level 1, (First Analysis)	93
Figure 4.9	Beam (UB305x165x54)at Level 3, (First Analysis)	94
Figure 4.10	Beam (UB305x165x54) at Level 2, (First Analysis)	95
Figure 4.11	Beam (UB305x165x54) at Level 1, (First Analysis)	96
Figure 4.12	Columns (UC305x305x240) at Level 3, (Second Analysis)	98
Figure 4.13	Columns (UC305x305x240) at Level 2, (Second Analysis)	99
Figure 4.14	Columns (UC305x305x240) at Level 1, (Second Analysis)	100
Figure 4.15	Beam (UB305x165x54) at Level 3, (Second Analysis)	101

FIGURE NO.

TITLE

Figure 4.16	Beam (UB305x165x54) at Level 2 , (Second Analysis)	102
Figure 4.17	Beam (UB305x165x54) at Level 1 , (Second Analysis)	103
Figure 4.18.	Proposed Cable Connection Frame Under Gravity Load	105
(0.08 KN/mm) and Lateral Load(20%)		
Figure 4.19	Columns (UC305x305x240) at Level 3, (Third Analysis)	106
Figure 4.20	Columns (UC305x305x240) at Level 2 , (Third Analysis)	107
Figure 4.21	Columns (UC305x305x240) at Level 1 , (Third Analysis)	108
Figure 4.22	Beam (UB305x165x54) at Level 3, (Third Analysis)	109
Figure 4.23	Beam (UB305x165x54) at Level 2, (Third Analysis)	110
Figure 4.24	Beam (UB305x165x54) at Level 1 , (Third Analysis)	111
Figure 4.25	Conventional Rigid Frame Under Gravity Load	113
	(0.08 KN/mm) and Lateral Load(20%)	
Figure 4.26	Column (UC305x305x240) at Level 3 (Rigid Connection)	114
Figure 4.27	Column (UC305x305x240) at Level 2 (Rigid Connection)	115
Figure 4.28	Column (UC305x305x240) at Level 1 (Rigid Connection)	116
Figure 4.29	Beam (UB305x165x54) at Level 3 (Rigid Connection)	117
Figure 4.30	Beam (UB305x165x54) at Level 2 (Rigid Connection)	118
Figure 4.31	Beam (UB305x165x54) at Level 1 (Rigid Connection)	119