COST EFFECTIVENESS COMPARISON OF PRE-FABRICATION WITH CONVENTIONAL CONSTRUCTION METHOD FOR RMAF GROUND DEFENSE BUNKER

TAN SWEE KOK

UNIVERSITI TEKNOLOGI MALAYSIA

"I hereby declare that i have read this project report and in my opinion this project report is sufficient in term of scope and quality for the awards of the Master in Science (Construction Management)"

Signature	:	•••••
Name of Supervisor	:	DR. ROZANA BINTI ZAKARIA
Date	:	April 2010

COST EFFECTIVENESS COMPARISON OF PRE-FABRICATION WITH CONVENTIONAL CONSTRUCTION METHOD FOR RMAF GROUND DEFENSE BUNKER

TAN SWEE KOK

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master in Science (Construction Management)

Faculty of Civil Engineering

Universiti Teknologi Malaysia

APRIL, 2010

I declare that this project report entitled "Cost Effectiveness Comparison of Pre-Fabrication with Conventional Construction Method for RMAF Ground Defense Bunker" is the result of my own research except as cited in the references. The dissertation has not been accepted for any degree and not concurrently submitted in candidature of any other degree.

Signature	:	
Name of Candidate	:	TAN SWEE KOK
Date:	:	April 2010

I dedicated this to my beloved wife Lydia Nyomek, my dearest father Mr. Tan Teck Lam and mother Mrs. Gan Eng Sin, and my loving sister Ms Tan Chen Chen for their everlasting support and encouragement for me in completing this course of studies.

ACKNOWLEDGEMENT

I would give my deepest appreciation and gratefulness to Dr. Rozana Binti Zakaria for the guidance and knowledge she has gave me with patience in completing my dissertation.

I would also like to convey my sincere appreciation to RMAF and PWD personnel who involved in the current bunkers construction for their support and time in helping me to complete this dissertation.

Finally, to my wife, my parents, i would express my gratitude for your support, encouragement and endless love for me.

ABSTRAK

Kaedah pembinaan pre-fabrikasi bukannya perkara baru dalam industri pembinaan Malaysia, namun penggunaannya masih pada tahap yang rendah. Pihak kerajaan sewajarnya menggalakkan penggunaan pembinaan pre-fabrikasi terutamanya pada projek-projek pembangunan kerajaan termasuk projek pembangunan keselamatan negara. Kaedah pre-fabrikasi merupakan kaedah moden yang diimplimentasikan secara luas di negara-negara membangun dan ia telah dibuktikan berkesan menjimatkan kos pembinaan, tenaga kerja, tempoh pembinaan, dan kualiti pembinaan.

Pangkalan Udara Kuantan telah dipilih untuk kajian kes disebabkan ia merupakan Pangkalan TUDM yang pertama dilengkapi dengan kubu pertahanan pangkalan. Data-data yang diperlukan telah diperolehi daripada tiga fasa kajian kes ini, meliputi tinjauan tapak, temubual, dan perbandingan kos pembinaan antara kaedah pre-fabrikasi dengan kaedah pembinaan tradisional. Penemuan-penemuan daripada data yang dianalisis membuktikan kubu-kubu sedia ada tidak memenuhi speksifikasi dan menimbulkan masalah-masalah kepada TUDM dan JKR sewaktu perlaksanaan projek. Walau bagaimanapun, kaedah pre-fabrikasi akan menyumbang kepada penyelesaian masalah-masalah yang timbul dan terbukti dari segi keberkesanan kos jika digunakan. Kajian ini telah mencadangkan pengagihan kerja dan tanggungjawab menyeluruh perlu diterapkan kepada semua pihak yang terlibat dalam projek pembangunan kubu. Kajian juga mengesyorkan ketelusan maklumat kos pembinaan amat penting diperolehi daripada pihak JKR. Tujuan utama dan objektif-objektif yang ditetapkan dalam kajian ini telah tercapai di mana masalah kerosakan yang terjadi kepada kubu-kubu yang sedia ada serta masalah-masalah pengoperasian pangkalan harian telah dikenalpasti. Persoalanan berkenaan perbandingan kos pembinaan kaedah pre-fabrikasi telah dibuktikan dan didaati kos pre-fabrikasi lebih berkesan, Maklumbalas daripada kebanyakan respondan menunjukkan penggunaan kaedah pre-fabrikasi yang menyeluruh di semua Pangkalan/ Unit TUDM pada Rancangan Malaysia Ke-10 adalah memungkinkan dan boleh menjimatkan kewangan pertahanan TUDM.

ABSTRACT

Pre-fabrication construction method is not new in Malaysian construction industry yet the utilization of such method still relatively low. Government should conduct thorough study of pre-fabrication method aspects and implement it widely especially for government based projects including national security development projects as well. Pre-fabrication method is a modern construction method that widely use by developed countries and it proven that to be more cost effective and cost saving on the aspect of cost, labor, time, quality and durability.

Pilot project of bunker construction in Kuantan Airbase (KAB) has chosen as case study for this research. While data required for this case study was generated from site survey, interview segment and construction cost comparison of prefabrication with conventional bunker construction. The findings showed that none of defense bunkers were fully complied with specifications. Majority of respondents agreed that current construction method caused several problems to RMAF and PWD. Pre-fabrication method was foresees contributed solutions to overcome current problems and furthermore this study identified that pre-fabrication is cost effectiveness for implementation. Recommendations suggested to improve current construction caused problems on site by imposing clear delegations and responsibilities for stakeholders whereas encourage cost information transparency provided by PWD. The primary aim and objectives of this study has been accomplished successfully in which the findings have eliminated uncertainties and arguments on pre-fabrication method cost effectiveness. Majority of respondents gave a feedback that pre-fabricated bunkers implementation are possibility for mass implementation of pre-fabricated bunkers in 10th Malaysian Plan in all RMAF Bases. This action will save financial of RMAF defense.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRAK	v
ABSTRACT	vii
TABLE OF CONTENT	ix
LIST OF TABLES	XV
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	xxi
LIST OF APPENDICES	xxiii

1 INTRODUCTION

1.1	Introduction	1
1.2	Research Background	3
1.3	Research Problem Statement	4
1.4	Aim and Objectives of Research	6
1.5	Scope of Research	6
1.6	Importance of Research	7

1.7	Brief	Research	Methodology	7
1.8	Expec	ted Findin	ngs	8
PRF	E-FABR	ICATION	N CONSTRUCTION METHOD	
2.1	Intro	duction		9
2.2	Malay	vsian Cons	struction Industrialization	12
	2.2.1	Convent	ional Construction Method	13
	2.2.2	Cast In-	situ Construction Method	14
	2.2.3	Pre-fabr	ication Construction Method	15
		2.2.3.1	Industrialized Building	
			System (IBS)	16
		2.2.3.2	IBS Classification	19
		2.2.3.3	Comparison of IBS	
			Classification	20
		2.2.3.4	IBS Groups	22
		2.2.3.5	Modular Coordination System	24
2.3	Advar	ntages of U	Using Pre-fabrication Method	25
2.4	Cost E	Effectiven	ess Using Pre-fabricated	
	Const	ruction M	ethod	26
	2.4.1	Effective	eness in Protecting RMAF	
		Safety a	nd Security	28
	2.4.2	Effective	eness in Construction Cost	29
	2.4.3	Effective	eness in Time of Completion	31
	2.4.4	Effectiv	veness in Quality of	
		Construe	ction	32
	2.4.5	Effective	eness in Labor Requirement	33
2.5	Build	ing Eleme	ental Cost Comparison	34
	2.5.1	Building	g Design Information	35
	2.5.2	Building	g Cost Information	36
	2.5.3	Cost Co	mparison	36
2.6	Failur	e of Using	g Pre-fabricated Method	37

2

3 RESEARCH METHODOLOGY

3.1	Introd	uction	40
3.2	Case S	Study of Kuantan Air Base	42
	3.2.1	Site Survey	43
	3.2.2	Interview Segment	43
	3.2.3	Construction Cost Comparison	45
3.3	Expec	ted Result	46

4 DATA ANALYSIS AND RESULTS

4.1	Introc	luction		48		
4.2	Phase	I – Site S	urvey	50		
	4.2.1	Structur	al Elements and Physical			
	Appea	rance Co	mparison	50		
	4.2.2	Analysi	s of Structural Elements			
	Dimer	Dimensions and Physical Appearance				
4.3	Phase	II – Inter	view Segment	58		
	4.3.1	Analysi	s of Respondents			
		Backgro	ound Information	59		
		4.3.1.1	Distribution of Respondents			
			by Position/ Appointment	60		
		4.3.1.2	Distribution of Respondents			
			by Rank/ Grade	61		
		4.3.1.3	Distribution of Respondents			
			by Field of Expertise	62		
		4.3.1.4	Distribution of Respondents			
			by Years of Active Service/			
			Experience	63		
		4.3.1.5	Distribution of Respondents			
			by Branch/ Trade	64		
		4.3.1.6	Distribution of Respondents			

		by Academic Qualification	65
4.3.2	Analysis	of Interview Questions	66
	4.3.2.1	Responses on Bases'	
		Safety and Security Issue	67
	4.3.2.2	Responses on Lengthy	
		Conventional Bunkers	
		Construction Period	71
	4.3.2.3	Responses on Negative Impacts	
		Caused by Lengthy	
		Construction Period	73
	4.3.2.4	Responses on Current Bunkers	
		Not Complying with Specification	76
	4.3.2.5	Responses on Incompetency	
		of Class F Contractors	79
	4.3.2.6	Responses on Costly Conventional	
		Bunker Construction Method	81
	4.3.2.7	Suggestions to Improve Overall	
		Base's Safety and Security,	
		Duration, Cost and Quality for	
		Current Bunkers Construction	83
	4.3.2.8	Responses on Pre-fabrication	
		Implementation to Improve Base's	
		Safety and Security	86
	4.3.2.9	Responses on Pre-fabricated	
		Bunkers Require Shorter	
		Construction Period	89
	4.3.2.10	Responses on Pre-fabricated	
		Bunkers Promote Better Quality	
		and More Standardized	92

		4.3.2.11 Responses on Cost Effectivenes	SS
		of Pre-fabricated Bunkers	
		Construction	95
		4.3.2.12 Responses on Feasibility or	
		Practicality of Pre-fabricated	
		Bunkers Construction	97
		4.3.2.13 Additional Suggestion to Impro	ve
		RMAF Defense Bunker	
		Construction	99
4.4	Phase	III – Cost Analysis	102
	4.4.1	Elemental Breakdown Cost Analysis	102
		for Current Bunkers' Cost	
	4.4.2	Estimated Cost for Pre-fabricated Bunker	rs 104
	4.4.3	Cost Comparison between Current Bunke	ers
		with Pre-fabricated Bunkers	104
		4.4.3.1 Identical Elements Cost Analysis	s 105
		4.4.3.2 Cost Comparison between Curre	nt
		Bunkers Construction with Pre-	
		fabricated Bunkers Construction	110
4.5	Concl	usion	112
FINID		ISCUSSIONS AND RECOMMENDATI	IONS
5 .1		uction	114
5.2		ng Discussions	114
5.2	5.2.1	Findings Discussions for Faultiness	115
	J.2.1	Identification	116
	522	Findings Discussions on	110
	J.2.2	Construction Problems Identification	119
	5.2.3		119
	5.2.5	Bunkers Cost Effectiveness Identification	n 123
5.3	Decer	nmendations for Research Problems	1 125
5.5	- NCCOII		120

5

	5.3.1	Recommendations for Clear	
		Delegations and Responsibilities	126
	5.3.2	Recommendations for Transparency in	
		Cost Information	130
5.4	Concl	usion	131

6 CONCLUSION

6.1	Introd	uction	133
6.2	Summ	nary of Research	134
	6.2.1	Summary for Research Objective 1	134
	6.2.2	Summary for Research Objective 2	135
	6.2.3	Summary for Research Objective 3	136
	6.2.4	Summary for Research Aim	136
6.3	Recon	nmendations for Future Research	137
	6.3.1	Identify Defense Bunkers	
		Strength Faultiness	137
	6.3.2	Identify Resources and Duration	
		Cost Effectiveness	140
6.4	Concl	usion	141
CES			143

REFERENCES

APPENDICES

147

LIST OF TABLE

TABLE NO.

TITLE

PAGE

Table 2.1	The Ontology of IBS Building System (Part 1)	17
Table 2.1	The Ontology of IBS Building System (Part 2)	18
Table 2.2	Characteristics of IBS Building System (Part 1)	18
Table 2.2	Characteristics of IBS Building System (Part 2)	19
Table 2.3	Comparison of IBS Classification (Part 1)	20
Table 2.3	Comparison of IBS Classification (Part 2)	21
Table 4.1	RMAF Specifications and Completed	
	Bunkers Comparison	51
Table 4.2	Bunkers' Slab Roof Dimensions	
	Compliancy Percentage	52
Table 4.3	Bunkers' Wall Dimensions	
	Compliancy Percentage	52
Table 4.4	Bunkers' Weapon Countertop Dimensions	
	Compliancy Percentage	53
Table 4.5	Bunkers' Metal Door Dimensions	
	Compliancy Percentage	53
Table 4.6	Bunkers' Metal Window Dimensions	
	Compliancy Percentage	54
Table 4.7	Bunkers' Ventilation Openings	

	Compliancy Percentage	54
Table 4.8	Bunkers' Firing Hole I Dimensions	
	Compliancy Percentage	55
Table 4.9	Bunkers' Firing Hole II Dimensions	
	Compliancy Percentage	55
Table 4.10	Bunkers' Raised Floor Dimension	
	Compliancy Percentage	56
Table 4.11	Bunkers with Roof Turfing	
	Compliancy Percentage	56
Table 4.12	Bunkers with Earth Barrier	
	Compliancy Percentage	57
Table 4.13	Bunkers with Earth Barrier	
	Compliancy Percentage	57
Table 4.14	Overall Bunkers Compliancy Percentage	58
Table 4.15	Position/ Appointment Distribution	60
Table 4.16	Rank/ Grade Distribution	61
Table 4.17	Field of Expertise Distribution	62
Table 4.18	Years of Active Service/ Experience Distribution	63
Table 4.19	Branch or Trade Distribution	64
Table 4.20	Academic Qualification Distribution	65
Table 4.21	Negative Responses for Question 1	68
Table 4.22	Positive Responses for Question 1 (Part 1)	68
Table 4.22	Positive Responses for Question 1 (Part 2)	69
Table 4.23	Percentage of Responses for Question 1	69
Table 4.24	Positive Responses for Question 2 (Part 1)	71
Table 4.24	Positive Responses for Question 2 (Part 2)	72
Table 4.25	Percentage of Responses for Question 2	72
Table 4.26	Positive Responses for Question 3	74
Table 4.27	Negative Responses for Question 3	75
Table 4.28	Percentage of Responses for Question 3	75

Table 4.29 Table 4.30	Positive Responses for Question 4 Negative Responses for Question 4	77 77
Table 4.31	Percentage of Responses for Question 4	77
Table 4.32	Positive Responses for Question 5	79
Table 4.33	Negative Responses for Question 5	79
Table 4.34	Percentage of Responses for Question 5	80
Table 4.35	Positive Responses for Question 6	81
Table 4.36	Negative Responses for Question 6	82
Table 4.37	Percentage of Responses for Question 6	82
Table 4.38	Suggestions for Question 7	84
Table 4.39	Percentage of Suggestions for Question 7	85
Table 4.40	Positive Responses for Question 8 (Part 1)	87
Table 4.40	Positive Responses for Question 8 (Part 2)	88
Table 4.41	Percentage of Responses for Question 8	88
Table 4.42	Positive Responses for Question 9	90
Table 4.43	Percentage of Responses for Question 9	91
Table 4.44	Positive Responses for Question 10	93
Table 4.45	Percentage of Responses for Question 10	93
Table 4.46	Positive Responses for Question 11 (Part 1)	95
Table 4.46	Positive Responses for Question 11 (Part 2)	95
Table 4.47	Percentage of Responses for Question 11	95
Table 4.48	Positive Responses for Question 12	98
Table 4.49	Percentage of Responses for Question 12	98
Table 4.50	Suggestions for Question13	100
Table 4.51	Percentage of Identical Suggestion	
	Categorization for Question 13	101
Table 4.52	Project Information and Cost for	
	Completed Bunkers in KAB	103
Table 4.53	Additional Cost for Bunker A1 Rectification	106
Table 4.54	Additional Cost for Bunker A2 Rectification	106
Table 4.55	Additional Cost for Bunker A3 Rectification	107

Table 4.56	Additional Cost for Bunker A4 Rectification	107
Table 4.57	Additional Cost for Bunker A5 Rectification	108
Table 4.58	Additional Cost for Bunker B1 Rectification	108
Table 4.59	Additional Cost for Bunker B2 Rectification	109
Table 4.60	Additional Cost for Bunker B3 Rectification	109
Table 4.61	Additional and Omission Cost for Bunker	
	B4 Rectification	110
Table 4.62	Cost Comparison between Conventional with	111
	Pre-fabricated Bunkers	
Table 5.1	Rectification Cost and Actual Construction	
	Cost for Current Bunkers	124
Table 5.2	Comparison of Actual Construction Cost	
	With Precast Costing	124

LIST OF FIGURE

TITLE

PAGE

Figure 2.1	Pre-fabricated Houses for Defense Designed by US	10
Figure 2.2	IBS Classification	19
Figure 3.1	Research Methodology Flow Chart	41
Figure 4.1	Rank/ Grade Distribution Percentage	61
Figure 4.2	Field of Expertise Distribution Percentage	62
Figure 4.3	Year of Active Service/ Experience	
	Distribution Percentage	63
Figure 4.4	Branch or Trade Distribution Percentage	64
Figure 4.5	Academic Qualification Distribution Percentage	65
Figure 5.1	Bunkers' Faultiness Categorization	117
Figure 5.2	Percentage of Bunkers Faultiness	118
Figure 5.3	Problems and Problem's Root Causes	
	Caused by Conventional Construction Method	120
Figure 5.4	Percentage of Responses on Problems Caused by	
	Conventional Construction Method	121
Figure 5.5	Percentage of Responses on Advantages of	
	Pre-fabrication Method Implementation	121
Figure 5.6	Advantages of Prefabricated Bunkers	
	Construction Implementation	122
Figure 5.7	Cost Reduction Using Ezidek and Eastern Pretech	
	Pre-fabricated Bunkers for Bunkers	

	Sector A and Sector B	125
Figure 5.8	Clear Delegations and Responsibilities	
	of Stakeholders	129
Figure 6.1	Additional Testing and Assessments	
	for Site Survey	140

LIST OF ABBREVIATIONS

Brig Gen	Brigadier General
Capt	Capten
CCD	Camouflage, Concealment and Decoy
CDD	Chief Deputy Director (PWD)
CIDB	Construction Industry Development Board
CMU	Concrete Masonry Units
C/ NC	Compliance/ Non- Compliance
Col	Colonel
DP&D	Department of Planning and Development
EXO	Executive Officer
IBS	Industrialize Building System
ID	Identification
KAB	Kuantan Air Base
Maj	Major
MC	Modular Coordination
MMC	Modern Method Construction
NBCR	Nuclear, Biological, Chemical, and Radiology
OPP	Outline Perspective Plan
PWD	Public Work Department
QA	Quality Assurance
QC	Quality Check

Quantity Surveyor
Royal Malaysian Air Force
Sector Alpha
Sector Bravo
Staff Officer 1
Staff Officer 2
Standard Operating Procedure

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Elemental Breakdown Structure Cost Analysis	147
В	RMAF Defense Bunkers Construction Drawing	158
С	Interview Questions	163
D	Current Bunkers Construction Cost Quotation Bills	169
E	Application for Pre-fabricated Bunkers Costing	
	from Local Precast Manufacturer	180
F	Pre-fabricated Bunkers Cost Estimating by	
	Local Precast Manufacturer	187
G	Location Plans for Existing Constructed	
	Defense Bunkers in Sector A and Sector B	
	Kuantan Air Base	190

CHAPTER 1

INTRODUCTION

1.1 Introduction

Ground defense is part of defense plan for every Royal Malaysian Air Force (RMAF) bases. In conjunction with the enhancement of RMAF base ground base defense program, a series of study, planning, design and review has been conducted by RMAF Department of Planning and Development (DP&P) and its' selected project team. A complete RMAF ground defense program proposal had been delivered to the highest-level management of RMAF for their consent and approval. Among all the elements in the proposal, one of the important supporting elements is ground defense bunker.

A great numbers of standardized bunkers will be built throughout all the RMAF bases in Malaysia for the next Tenth Malaysian Plan. However, before the mass implementation of bunkers construction in all the RMAF bases, Kuantan AirBase (KAB) has been selected as the very first base to be equipped with these bunkers. These bunkers are in the budget of Ninth Malaysian Plan. These pilot bunkers are purposely for design review and feasibility study of the future new designed bunker.

After two consecutive years of the construction of nine (09) bunkers in KAB, project design team assigned faced the same repetitive problems such as unstable yearly costing of bunker construction and no construction standardization in size and other specifications due to the lack of engineering knowledge and incompetency of Class-F contractors selected by Department of Public Work (PWD).

Furthermore, lack of influential power in contract awarding process and payment process by RMAF personnel has made it even more difficult to select capable contractor and reduce unnecessary cost incurred during construction. While contractor usually tries to gain as much profit as they can and tend to use sub-standard or low quality materials throughout the construction process. RMAF design team in fact generalize this problem after found out that all the contractors were using bricks to assemble the bunker's ventilation part, instead of using reinforcement concrete as what stated in method of construction.

Additional, by selecting any random contractor to work inside the base potentially offer a treat to base in term of information leakage, sabotage, and espionage, during period of On-site construction activities. Therefore, more work forces from military have to assign to project site to monitor movement of contractors.

1.2 Research Background

Issues of construction cost and specification standardization has raised the main concerns of the design team to find a better execution plan to mitigate the existing problems of bunkers development plan. Moreover, potential safety and security issue also have to take into consideration while implementing the plan.

Design team has to propose the alternative solutions and usage of prefabrication construction method could be one of the alternatives beside conventional construction method. Comparisons in term of cost effectiveness and specification standardization are needed in order to justify which alternatives are more reliable.

Prefabrication construction has the advantage of rapid erection and a fast onsite construction, and the elements are produced in factories, which secures good quality. But requires a detailed design and connection details are complicated. In the respect of generation of construction waste, a research conducted (Tam et. Al, 2004) had proved that prefabrication construction tends to produce less wastage than conventional construction.

In the RMAF, conventional construction method is the only implementation for the development of all type construction projects, even though issues of inadequate contractors, slow productivity, traditional and costly construction method is still repeating. However, determination to resolve and improve the current problematic situation, RMAF will be adapting contemporary construction method such as prefabrication system for the beneficial of RMAF organization.

1.3 Research Problem Statement

Since the establishment of RMAF in the late 50's, RMAF organization Planning and Development Department has been working hand in hand with the Public Work Department (PWD) for the development of building construction project in bases. However, RMAF project team only acts as coordinator that responsible for the planning and designing stages for RMAF development project; where else, PWD has the obligation to fulfill RMAF's requirements as required. In this working environment, RMAF dependence on PWD in contract awarding, monitoring and commissioning of project eventually create some problems to the RMAF.

Engineering professionalism of selected Class-F contractors is the main problem facing by RMAF design team since contractors selected are consider incompetent in the term of knowledge and expertise during construction processes that resulted to unnecessary construction faultiness.

In addition, review done after the completion of 1st and 2nd phase bunkers construction in KAB has generalized that all selected contractors are lack of engineering knowledge while performing engineering-related task. Incompetency shown relatively is the wrong interpretation of construction drawing that ended up in wrong construction of bunker size, opening of windows and doors, weapons support countertop's size, water proofing system and ventilation system. Moreover, contractors tend to use sub-standard material during the construction phase and refuse to comply with specifications and standards given, that eventually resulted to additional cost for correcting constructions faultiness and reinforcing the bunker structure.

Besides that, another problem that should be taking into consideration is the base safety and security problem. As a military establishment, requirement of safety and security is relatively high and tight for any civilian personnel that wish to gain access into the base. To ensure safety, all contractors should be subject to identity filtering, vehicle check, issue of temporary access past for contractors and vehicle, and periodical visual check by military polices at construction site.

Every movement and activity carry out by contractors is recorded due to military policies to prevent possible criminal offences by civilians in the base, ensure off limits civilians businesses and establishments not offended, ensure of weapons safety, access of restricted areas, and photography activities. Therefore, additional manpower from the military security forces is assigned to carry out additional task since contractors and their workers is considered as a threats to the overall safety and security of bases that might lead to problems of classified military information leakage, sabotage of military facilities and assets and any espionage activities.

Generally, problems of this research could be identified and categorized as following:

- (i) Safety and security issue;
- (ii) High construction cost;
- (iii) Lengthy construction period; and
- (iv) No compliance to specification and no standardization.

1.4 Aim and Objectives of Research

The aim of this research is to verify the cost effectiveness of applying prefabrication construction method compare with conventional construction method in order to save government budget for RMAF base defense program.

However, the specific objectives of this research are as follow:

- (i) To identify the existing bunkers faultiness;
- (ii) To identify the implications of conventional bunkers construction; and

(iii) To compare the potential cost effectiveness of using pre-fabrication method for bunker construction.

1.5 Scope of Research

Scope of research determined to facilitate the literature research, by focusing on pre-fabrication construction during installation stage in literature research and data collection process for empirical research from the companies' manuals documents study, case studies, and interviews. This research covers:

- (i) Case study in KAB;
- (ii) Observation and record of problems occurred on site;

(iii) Explore Cost effectiveness of pre-fabrication construction method, and compare to conventional bunkers method.

1.6 Importance of Research

The RMAF Department of Planning and Development is facing challenges in four aspects; cost, time, quality and safety of bases. Actually, by implementing a innovative way of construction method such as pre-fabrication system can ensure the effectiveness in cost, time, quality and safety of any RMAF construction project.

Thus, this research will help to measure the cost effectiveness in pre-fabricated bunker and the compliance of the Military safety and security regulations coupled with the engineering knowledge to provide advantages to the selected contractors. Besides that, it also decreases the cost of construction and the project can be completed with high quality with faster time.

1.7 Brief Research Methodology

The research methodology of this research is divided into five main stages as follows:

- (i) Identify problem from existing completed project;
- (ii) Identify objectives and scopes for research;

(iii) Collect data via literature review and empirical review through case study;

- (a) Site Survey site visit, record observation;
- (b) Interview all parties involved in previous bunker construction;
- (c) Cost analysis actual current construction cost and comparison cost of pre-fabricated bunkers with current bunkers.
- (iv) Conduct analysis and prepare theoretical and empirical results.

(v) Provide conclusions and recommendations for overall findings and propose pre-fabrication method for the repetition construction of another 200 unit bunkers in all RMAF Bases.

1.8 Expected Findings

It is expected that, quantitative and qualitative data collected through three major phases of data collection from site survey, interview segment or cost effectiveness comparison between existing construction cost and quotation given by local precast manufacturer can enable the accomplishment of three main objectives in this study which inclusive of:

- (i) Identify the existing bunkers physical construction faultiness;
- (ii) Identify the complications caused by conventional method; and
- (iii) Identify the cost effectiveness of pre-fabricated bunkers construction.

CHAPTER 2

Pre-fabrication Construction Method

2.1 Introduction

Pre-fabrication method is not a new concept in the construction industry because it was practiced even longer back to the 17th century while timber panels were created and shipped from England to new settlement in America (Shaari, 2003).

However, the use of pre-fabricated method in the military can be observed through some important event such end of War World II, Soviet Union (USSR) had been gathering information on construction methods especially from United State (US) for its country post-war rehabilitation programs. In order to equip its countries' architects, engineers, and students with adequate knowledge, Soviet Union government has officially exhibit United State modern construction method in prefabrication construction, descriptions of plumbing and heating systems, building materials samples, and proposal of residential construction with the intention of performing its nationwide rehabilitation program.

Soviet Government foresee by implementing modern method of pre-fabricated construction in the rehabilitation program can eventually enable the country to reconstruct the basic need of its citizens and especially for its defense capability. The US modernization and advance in construction are the reasons that inspired USSR to implement the same pre-fabrication construction method to rebuild its country. The modernization of US construction method is shown in Figure 2.1.

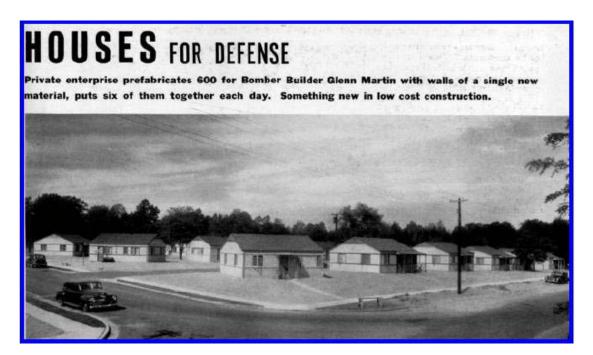


Figure 2.1: Pre-fabricated Houses for Defense Designed by United State (Source: Anderson, 2009)

Integration of knowledge from all construction stakeholders in this radical rehabilitation program not only successfully rebuild war-destructed areas, aerial and land bombarded military installations and establishment. Moreover, it also met the acute need of housing construction that required by millions of people rendered homeless by war (Anderson, 2009). Furthermore, another observed significance to the event had demonstrated the first giant step in the great work of rehabilitating peacetime housing construction all over the world (Anderson, 2009). Pre-fabrication therefore has further developed into steel and precast concrete technology and has been using until present days.

In Malaysia, pre-fabrication is not a new concept in our Malaysian Construction Industry. With the evolvement of construction method, pre-fabrication has been further popularize with the term of Industrialized Building System (IBS) among the industry stakeholders and manufacturers within the industry had been industrializing components and structures of building or infrastructure part by part to meet the requirement of standardization at site.

Nonetheless, the norm of using pre-fabricated method or industrialized components in Malaysian construction industry is consider relatively low and especially compare with conventional method. In additional, prefabricated method will be implemented if contractors have no other choices due to tide schedule and site condition, and they are preferably to employ relatively cheap foreign workers to create labour-intensive construction activities (Shaari, 2003).