UNIVERSITI TEKNOLOGI MALAYSIA

MOHAN Author's full name :	MAD ZAKI BIN MAJID
Date of birth : <u>21/10/1</u>	980
Title : BEAM-TO	D-COLUMN CONNECTION USING HOLLOW
STEEL SEC	CTION FOR PRECAST CONCRETE FRAMES
2009/201 Academic Session:	10
I declare that this thesis is classi	fied as :
CONFIDENTIAL	(Contains confidential information under the Official Secre- Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)
I acknowledged that Universiti	Teknologi Malaysia reserves the right as follows:
The Library of Universiti T of research only.	y of Universiti Teknologi Malaysia. Teknologi Malaysia has the right to make copies for the purpose to make copies of the thesis for academic exchange.
	Certified by :
SIGNATURE	SIGNATURE OF SUPERVISOR
801021-02-5021 (NEW IC NO. /PASSPORT I	PROF. MADYA DR. A. AZIZ SAIM NO.) NAME OF SUPERVISOR

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organisation with period and reasons for confidentiality or restriction.

"I hereby declare that I have read this project report and in my opinion this project report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil-Structure)."

Signature	i
Name of Supervisor	: Assoc. Prof. Dr. A. Aziz Saim
Date	·

BEAM-TO-COLUMN CONNECTION USING HOLLOW STEEL SECTION FOR PRECAST CONCRETE FRAMES

MOHAMAD ZAKI BIN MAJID

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

Faculty of Civil Engineering Universiti Teknologi Malaysia

APRIL 2010

"I declare that this project report entitled "Beam-to-Column Connection Using Hollow Steel Section for Precast Concrete Frames" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree."

Signature	
Name	: MOHAMAD ZAKI BIN MAJID
Date	:

DEDICATION

To my beloved parents, wife and daughter

ACKNOWLEDGEMENT

I would like to express my greatest appreciation to my supervisor, Assoc. Prof. Dr. A. Aziz Saim, for his generous guidance, advice and motivation throughout this research.

A special thank dedicated to my beloved parents, wife and daughter, for their continuing morale supports throughout my studies. Finally, my sincere appreciation also extends to all my friends, the structural laboratory personnel, those who were directly or indirectly involved in the process of producing this research report, for their generous assistance, useful views and tips.

Without their support and contribution, this research project would not have been possible.

ABSTRACT

The performance of precast concrete frames depends on the behaviour of connection. The configuration of connections between beam-to-column affects the constructability, stability, strength, flexibility and residual force in the structure. In addition, connections play a key role in the dissipation of energy and redistribution of loads. This paper describes the comparative study on testing between rigid and precast beam-to-column connections to obtain the important characteristics of the connections such as the load-displacement and moment-rotation relationship. The objective of the study is to propose a beam-to-column connection using hollow steel section for precast concrete frames and to determine experimentally the moment resistance and rotation of the proposed beam-to-column connection. In this study, three specimens comprised two precast concrete beam-to-column connection using hollow steel section and one rigid beam-to-column connection were considered. The behaviour of load displacement, moment rotation relationships and type of failure in connections are also investigated. The result indicates that the precast connection using hollow steel section provides very minimum moment resistance and hence the connection can be best model as pinned.

ABSTRAK

Keupayaan kerangka konkrit pra-tuang adalah bergantung kepada sifat sambungannya. Kaedah sambungan rasuk kepada tiang akan mempengaruhi kebolehbinaan, kestabilan, kekukuhan, kebolehlenturan dan kebolehtahanan daya dalam sesuatu struktur. Tambahan pula, sambungan memainkan peranan penting dalam pengagihan beban. Kajian ini menerangkan perbandingan ujian di antara sambungan rasuk kepada tiang konkrit kekal dan pra-tuang untuk memperolehi sifat-sifat penting sambungan tersebut seperti hubungan beban-lenturan dan putaran-momen lentur. Objektif kajian ini adalah untuk mencadangkan sambungan rasuk kepada tiang menggunakan "hollow steel section" pada kerangka konkrit pra-tuang dan untuk menentukan secara eksperimen rintangan momen dan putaran sambungan rasuk kepada tiang. Dalam kajian ini sebanyak tiga spesimen dipertimbangkan di mana dua daripadanya adalah spesimen rasuk kepada tiang konkrit pra-tuang menggunakan sambungan "hollow steel section" dan satu spesimen sambungan rasuk kepada tiang kekal. Sifat hubungan beban-lenturan, putaran-momen lentur dan bentuk kegagalan turut dikaji. Kajian mendapati sambungan pra-tuang menggunakan "hollow steel section" menghasilkan rintangan momen yang minimum dan ianya boleh dimodelkan sebagai "pinned".

CONTENTS

TITL	<u>.E</u>	PAGE
TITL	Æ	i
DEC	LARATION	ii
DED!	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	ГКАСТ	v
ABS	ГКАК	vi
CON	vii	
LIST	OF TABLES	X
LIST	OF FIGURES	xi
LIST	OF ABBREVIATIONS	xiv
	INTRODUCTION	1
1.1	Introduction	1
1.2	Statement of Problem	2
1.3	Objective of the Study	3
1.4	Scope of Study	3
1 -	Significant of the Study	4
1.5	Digitificant of the Study	4
1.5	Significant of the Study	4
1.5	LITERATURE REVIEW	5
	TITI DEC DED ACK ABST CON LIST LIST LIST 1.1 1.2 1.3 1.4	Statement of ProblemObjective of the StudyScope of Study

	2.2	Types of Precast Frame		
	2.3	Precast Concrete Connections	10	
		2.3.1 Simple Beam-to-Column Connection in		
		Precast Concrete Structures	11	
		2.3.1.1 Open Column Connection – Beam		
		Support on Corbel	11	
		2.3.1.2 Hidden Connections at Column Face	13	
		2.3.1.2.1 Steel Billet	13	
		2.3.1.2.2 Cleat Connector	15	
		2.3.1.2.3 Welded Plate Connector	16	
		2.3.1.2.4 Sliding Plate	17	
	2.4	Connection Design Criteria	19	
	2.5	Column Insert Design	20	
	2.6	Load-Displacement Relationships	22	
	2.7	Moment-Rotation Relationships	23	
CHAPTER 3		RESEARCH METHODOLOGY		
	3.1	Introduction	25	
	3.2	Research Design and Procedure	25	
	3.3	Materials Used to Form the Specimens	36	
		3.3.1 Concrete	36	
		3.3.1.1 Cube Test	37	
		3.3.1.2 Slump Test	38	
		3.3.2 Reinforcement	38	
		3.3.3 Formwork	39	
		3.3.4 Steel Connectors	41	
	3.4	Experimental Setup and Procedures	41	
CHAPTER 4	ı	RESULTS AND ANALYSIS		

	4.1.1	Moment-Rotation Calculation Method	48
4.2	Specin	men 1 (S-R)	49
	4.2.1	Load-Displacement Relationship	49
	4.2.2	Moment-Rotation Relationship	50
	4.2.3	Failure Mechanisms	51
4.3	Specia	men 2 (S-P1)	53
	4.3.1	Load-Displacement Relationship	53
	4.3.2	Moment-Rotation Relationship	54
	4.3.3	Failure Mechanisms	55
4.4	Specia	men 3 (S-P2)	57
	4.4.1	Load-Displacement Relationship	57
	4.4.2	Moment-Rotation Relationship	58
	4.4.3	Failure Mechanisms	58
CHAPTER 5	DISCUSSIONS		60
5.1	Introd	uction	60
5.2	Load-	Displacement Relationship	60
5.3	Mome	ent-Rotation Relationship	64
5.4	Failur	e Mode	66
CHAPTER 6	CON	CLUSIONS	69
6.1	Introd	uction	69
6.2	Concl	usion	70
6.3	Sugge	stion for Future Study	71
	REFE	CRENCES	72
	APPE	ENDIX	74

LIST OF TABLES

TABLE NO.	TITLE	PAGE
5.1	Comparison of deflection between rigid and precast specimen	62
5.2	Summary of failure for each specimen	66

LIST OF FIGURES

FIGURE NO.	TITLE	<u>PAGE</u>
2.1 (a)	The frame wall	7
2.1 (b)	The frame wall	7
2.2 (a)	The portal frame	8
2.2 (b)	The portal frame	8
2.3 (a)	The skeletal structure	9
2.3 (b)	The skeletal structure	9
2.4 (a)	Typical figure of corbels and nibs connection	12
2.4 (b)	Beam-to-column connection using corbels and nib	s 12
2.5 (a)	Beam-to-column connection using steel section	14
2.5 (b)	Beam-to-column connection using steel section	14
2.5 (c)	Beam-to-column connection using steel section	14
2.6 (a)	Beam-to-column connection with cleat connector	15
2.6 (b)	Beam-to-column connection with cleat connector	16
2.7 (a)	Beam-to-column connection using	
	solid section with welded plate connector	17
2.7 (b)	Beam-to-column connection using	
	solid section with welded plate connector	17
2.8 (a)	Beam-to-column connection with sliding plate	18
2.8 (b)	Beam-to-column connection with sliding plate	18
2.9	Basic principle for design of column inserts	21
2.10	Typical load-displacement curve	23
2.11	Typical moment-rotation curve	24
3.1	Elevation view of monolithic specimen (S-R)	27
3.2	Front view of monolithic specimen (S-R)	27
3.3	Plan view of monolithic specimen (S-R)	28
3.4	Perspective view of monolithic specimen (S-R)	28

3.5	Photo of monolithic specimen (S-R)	29
3.6	Photo of reinforcement connection for	
	monolithic specimen (S-R)	29
3.7	Elevation view of precast specimen (S-P1)	30
3.8	Front view of precast specimen (S-P1)	30
3.9	Plan view of precast specimen (S-P1)	31
3.10	Perspective view of precast specimen (S-P1)	31
3.11	Photo of preparation for precast specimen (S-P1)	32
3.12	Photo of column insert for precast specimen (S-P1)	32
3.13	Elevation view of precast specimen (S-P2)	33
3.14	Front view of precast specimen (S-P2)	33
3.15	Plan view of precast specimen (S-P2)	34
3.16	Perspective view of precast specimen (S-P2)	34
3.17	Photo of preparation for precast specimen (S-P2)	35
3.18	Photo of column insert for precast specimen (S-P2)	35
3.19	Photo of concreting work	36
3.20	Photo of completed specimen	37
3.21	Photo of cube test sample	37
3.22	Photo of compression test	38
3.23	Photo of reinforcement for all specimen	39
3.24	Photo of reinforcement preparation	39
3.25	Photo of formwork preparation for monolithic	
	specimen	40
3.26	Photo of completed formwork	40
3.27	Photo of steel connectors	41
3.28	Typical experimental setup	42
3.29	Photo of experimental setup for monolithic	
	specimen (S-R)	43
3.30	Photo of experimental setup for precast	
	specimen (S-P1)	43
3.31	Photo of experimental setup for precast	
	specimen (S-P2)	44

3.32	Photo of load cell	44
3.33	Photo of LVDT	45
3.34	Photo of inclinometer	45
3.35	Photo of inclinometer	46
3.36	Photo of data logger	46
4.1	Location of testing equipment	48
4.2	Moment-rotation calculation method	49
4.3	Load-displacement curve of S-R	50
4.4	Moment-rotation curves of S-R	51
4.5	Failure mode of specimen S-R (right side)	52
4.6	Failure mode of specimen S-R (left side)	52
4.7	Failure mode of specimen S-R (top of beam)	53
4.8	Load-displacement curve of S-P1	54
4.9	Moment-rotation curves of S-P1	55
4.10	Failure mode of S-P1	56
4.11	Failure mode of S-P1 (splitting crack)	56
4.12	Load-displacement curves of S-P2	57
4.13	Moment-rotation curves of S-P2	58
4.14	Failure mode of S-P2 (right side)	59
4.15	Failure mode of S-P2 (left side)	60
5.1	Load-displacement relationship	63
5.2	Moment-rotation curve	65
5.3	Failure mechanism at connection part of	
	precast beam	68
6.1	Providing horizontal U-bars at bolt sleeve	
	in precast beam	71

LIST OF ABBREVIATIONS

% - percentage

° - degree

As - area of tension steel reinforcement

av - level arm distance to shear force

b - breadth of section

d - effective depth of section to tension steel

fcu - characteristic compressive strength of concrete

fy - ultimate yield stress of steel

h - depth of section

kg - kilograms

kN - kilo Newton

kNm - kilo Newton meter

m - meter

M - bending moment

m₃ - meter cubes

milirad - miliradian

mm - millimeter

N/mm2 - Newton per millimeter square

Nu - horizontal force

φ - rotation

rad - radian

V -shear force

v - shear stress

vc - design concrete shear stress

Vu - gravity load

 Δ - deflection

 Δu - ultimate deflection

 Δy - initial yield deflection

μm - micrometer

φu - ultimate rotation

φy - initial yield rotation

 π - "pi", mathematical constant equal to 3.141592654

 Φ - diameter

CHAPTER 1

INTRODUCTION

1.1 Introduction

Precast concrete is one of the elements being associated with IBS constructions. The use of precast concrete multi-storey framed buildings is now widely regarded as an economic, structurally sound and architecturally versatile form of construction. It combines the benefits of very rapid construction and high quality materials with the advantaged of production line economy and quality assurance. Design is carried out to the concrete industry and yet the knowledge remains essentially within the precast concrete industry itself.

The advantages of precast construction are inherent in the precast beam-to-column connections, as these are jointed connection as apposed to cast-in-situ emulation type connection. This study to investigate the behaviour of precast beam-to-column connection using hollow steel section by conducting experimental tests that will show that the performance of this connection is as good as conventional cast-in-place connection.

Connection design is one of the most important considerations for the successful construction of precast reinforced concrete structures (Loo and Yao, 1995). This is because the structural performance of precast concrete systems depends on the

connection behaviour. Connection can be rigid (continuous design), semi-rigid (semi-continuous design) and simple (simple design). These three terms indicate the degree of moment to be transferred between members. The rigid connection and simple connection transfer full moment and zero moment between members. The degree of moment transfer for semi-rigid connection stands between rigid and simple connection.

In this study, experimental tests were conducted to assess the behaviour and performance of the beam-to-column connection by studying the load-displacement relationship, moment-rotation relationship and types of failure in the connections.

The significance of precast structures has gained further recognition through the launching of Industrialized Building System (IBS) in Malaysia. To date, precast concrete components in our country is supplied by several companies such as Associated Structural Concrete Sdn. Bhd. (ACPI), Hume Concrete Marketing Sdn. Bhd., IJM Building System Sdn. Bhd., Setia Precast Sdn. Bhd., Sunway Precast Industries Sdn. Bhd., Eastern Pretech (M) Sdn. Bhd., Baktian Sdn. Bhd., Zenbes Sdn. Bhd., Integrated Brickworks Sdn. Bhd., Multi Usage (Holding) Sdn. Bhd. and PJD Concrete Sdn. Bhd. (CIDB, 2004).

1.2 Statement of Problem

In Malaysia, the industrialised building system had started forty years ago but until today it is still experimenting with various prefabricated method. Recently, The Government of Malaysia encourages the use of IBS especially in new government office building projects. For the start, the government insist that the office building shall have at least 70% IBS components. To make the IBS industry materialised, research has to be carried out to standardise the IBS components especially the beams and column. This will make IBS more marketable.

According to Elliot (1996), some 24 tests have been conducted using welded plate and concrete corbel, however, the section connectors and stiffened cleat types have not widely carried out. Although the Pre-stressed Concrete Institute (PCI) manuals contain descriptions of typical beam-to-column connections fulfilling many functions, the published test results are available for only a few of them (Loo and Yao, 1995).

Thus, the main statement of problem is as follows;

Lack of experimental data and analytical proof accounts for the ductile connection
details for beam-to-column connection in precast structure. In addition, reliable
connection behaviour can only be properly assessed by laboratory testing or
proven performance.

1.3 Objective of the Study

The objectives of the study are as follows:

- i) To propose a beam-to-column connection using hollow steel section for precast concrete frames.
- ii) To determine experimentally the moment resistance and rotation of the proposed beam-to-column connection.

1.4 Scope of Study

The scope of this study is limited to simple beam-to-column connections in rigid and precast concrete frames. The precast beams, columns and steel section for this testing were designed using BS 8110:1997. According to BS 8110: Part 1: 1997 Clause 5.1.2, the

recommended methods of design and detailing for reinforced concrete and pre-stressed concrete also applied to precast concrete. Apart from that, the connectors such as angles, plates and bolts were designed based on BS 5950: 2000. The testing consisted of three specimens. Each specimen contained of a beam 200 x 300 x 1000 mm in a 200 x 200 x 2000 mm column. The concrete strength for all specimens was 40 N/mm2 at 28 days. The testing was conducted to study the behaviour and performance of beam-to-column connections in precast concrete frames.

1.5 Significant of the Study

The connection design plays a vital role in determining the successful of the precast concrete structure. The detailing and structural behaviour of the connection such as beam-to-column connections will affect the strength, stability and constructability as well as load distribution of the structure under load. In this research, laboratory testing was conducted to assess the behaviour and performance of the beam-to-column connections by studying load displacement relationships, moment-rotation relationships and types of failure in connections. Based on the results obtained, the use of the proposed connections with either precast concrete braced frame (with lateral stability systems such as shear walls) or un-braced frame (without lateral stability systems) can be studied.