UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT		
Author's full name : NOOR N	ABILAH BINTI SARBINI	
Date of birth : 27 OCTO	<u>BER 1985</u>	
Title : <u>THE EFF</u>	ECTIVENESS OF INDEPENDENT BENT-UP BARS	
<u>WITH IN</u>	SUFFICIENT ANCHORAGE AND INCLINED LINKS AS	
SHEAR 1	REINFORCEMENT	
Academic Session : 2009-2010	<u>)</u>	
I declare that this thesis is classifie	ed as:	
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*	
RESTRICTED	(Contains restricted information as specified by the organisation where research was done)*	
\checkmark OPEN ACCESS	l agree that my thesis to be published as online open access (full text)	
 I acknowledged that Universiti Teknologi Malaysia reserves the right as follows : The thesis is the property of Universiti Teknologi Malaysia. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only. The Library has the right to make copies of the thesis for academic exchange. 		
Certified by :		
(SIGNATURE) (SIGNATURE OF SUPERVISOR)		
851027-01-6148 ASSOC. PROF. DR. RAMLI BIN ABDULLAH		
(NEW IC NO.) (NAME OF SUPERVISOR)		
Date : <u>NOVEMBER 2</u>	D09 Date:NOVEMBER 2009	
NOTES : *If the thesis	is CONFIDENTIAL or RESTRICTED, please attach with	
the letter from the organisation with period and reasons for		
confidentiali	ty or restriction.	

"I declare that I have read through this project report and to my opinion this report is adequate in term of scope and quality for the purpose of awarding the degree of Master of Engineering (Civil-Structure)"

Signature	:	
Name of Supervisor	:	ASSOC. PROF. DR. RAMLI BIN ABDULLAH
Date	:	NOVEMBER 2009

THE EFFECTIVENESS OF INDEPENDENT BENT-UP BARS WITH INSUFFICIENT ANCHORAGE AND INCLINED LINKS AS SHEAR REINFORCEMENT

NOOR NABILAH BINTI SARBINI

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > November, 2009

I declare that this project report entitled "The Effectiveness of Independent Bent-Up Bars with Insufficient Anchorage and Inclined Links as Shear Reinforcement" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	•••••
Name	:	NOOR NABILAH BINTI SARBINI
Date	:	NOVEMBER 2009

Dearest,

Thank you for mama, papa, siblings & friends...

Special to,

Azman Hafiidz Aji...

Thank you for always be there.

ACKNOWLEDGEMENT

I would like to take this opportunity to dedicate a special thanks to my supervisor, Assoc. Prof. Dr. Ramli bin Abdullah, for all his guidance, advices, critics and knowledge given. It is so excitable and challenges in exploring Reinforced Concrete field as it provides evidences for beauty of knowledge.

Next, my sincere gratitude goes to all fellow friends who always provided me with support and encouragement at all times. It is nice to have friends in all several of occasions, where many ideas will be generates.

Last but not least, I indebted my appreciation towards all technicians in Structural Laboratory FKA UTM, family, colleagues and everybody who involved directly or indirectly in completing this research.

Thank you.

ABSTRACT

Shear failure in beams is caused by diagonal cracks near the supports. Any form of effectively anchored reinforcement which intersect these cracks will be able to resist the shear stress to a certain extend. This thesis presents the results of an experimental investigation on six reinforced concrete beams in which their structural behaviour in shear was studied. All the beams were cast with the same grade of concrete and provided with identical amount of main reinforcement. In order to investigate the contribution of the independent bentup bars with insufficient anchorage and varying amount as well as the inclined links to the shear carrying capacity of the beam. Four of the beams were provided with independent bent-up bars of different amount and anchorage, and one with inclined links. The performances of the beams were measured in terms of deflection, strain, diagonal cracks loads and ultimate loads. The results show that the shear capacities of the beam with inclined links and independent bent-up bars (4T16) of 150 mm anchorage length are higher than that of the conventional designed beam. At the same time, independent bent-up bars of 9T16 with 50 mm anchorage length also give higher shear capacities due to its larger shear reinforcement to cross-sectional ratio of 1.2%. Meanwhile, independent bent-up bars of 4T16 with 50 mm anchorage length to crosssectional ratio of 0.8% give low shear capacities. It may therefore be suggested that independent bent-up bars of 150 mm anchorage length be used to replace the conventional vertical links as shear reinforcement.

ABSTRAK

Kegagalan ricih di dalam rasuk adalah disebabkan oleh keretakan condong yang wujud berdekatan penyokong. Apa sahaja bentuk tetulang yang merintangi keretakan ini, akan dapat menahan tegasan ricih sehingga sampai had yang tertentu. Kajian ini memaparkan keputusan ujikaji yang telah dijalankan ke atas enam sampel rasuk konkrit bertetulang, yang mana struktur kelakunannya dikaji. Semua rasuk dibina dengan kekuatan gred konkrit yang sama, dan menggunakan bilangan dan jenis tetulang utama yang sama. Bagi mengkaji sumbangan bar condong bebas dengan panjang tambatan yang tidak mencukupi dan kuantiti yang pelbagai, juga perangkai condong terhadap keupayaan rasuk menanggung ricih, empat rasuk telah disediakan dengan kuantiti bar condong bebas serta panjang tambatan yang berbeza, serta satu rasuk dengan perangkai condong. Kelakunan rasuk dalam menghalang ricih dikaji berdasarkan nilai pesongan rasuk, keterikan bar condong bebas, beban ketika keretakan condong berlaku serta bebn muktamad. Keputusan ujikaji menunjukkan bahawa rasuk yang menggunakan perangkai condong dan bar condong bebas (4T16) dengan panjang tambatan 150 mm boleh menanggung keupayaan ricih lebih daripada rasuk yang menggunakan perangkai pugak. Pada masa yang sama, bar condong bebas dengan panjang tambatan 50 mm juga memberikan lebih keupayaan ricih disebabkan oleh bar condong bebas yang lebih daripada 1.2 % terhadap keratan rentas rasuk. Manakala 0.8% bar condong bebas, 4T16 dengan panjang tambatan 50 mm terhadap keratin rentas rasuk memberikan rintangan ricih yang rendah. Justeru itu, bar condong bebas dengan panjang tambatan 150 mm dicadangkan untuk menggantikan perangkai pugak sebagai tetulang ricih.

TABLE OF CONTENTS

TITLE	iii
DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF FIGURES	xii
LIST OF TABLES	XV
LIST OF SYMBOLS	xvi
LIST OF APPENDICES	XX

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Scope of the Research	4

CHAPTER 2 LITERATURE REVIEW

2.1	Overview of Shear	6
2.2	Shear Stress in Reinforced Concrete Beams	7

2.3	Types	of Shear Failure	8
2.4	Shear in Beams without Shear Reinforcement		9
	2.4.1	Mechanisms of Shear Transfer	9
	2.4.2	Factors Affecting the Shear Capacity	10
	2.4.3	Design Formula for Shear Stress	11
2.5	5 Shear in Beams with Shear Reinforcement		12
	2.5.1	Function of Shear Reinforcement	12
	2.5.2	Shear Resistance of a Beam with Vertical Links	13
	2.5.3	Shear Resistance of a Beam with Bent-up Bars	15
	2.5.4	Shear Resistance of a Beam with Horizontal	16
		Web Steel	
2.6	Summ	ary	17

CHAPTER 3 EXPERIMENTAL INVESTIGATION

3.1	Introduction	26
3.2	Design of Experiment	26
3.3	Details of Specimens	27
3.4	The Materials	29
	3.4.1 Concrete	29
	3.4.2 Steel Reinforcement	30
	3.4.3 The Mould	30
3.5	Casting and Curing	31
3.6	Test Procedures	31

CHAPTER 4 TEST RESULTS

4.1	Beam B1	44
	4.1.1 Specimen Behaviour	44
	4.1.2 Test Results	45
4.2	Beam B2	45
	4.2.1 Specimen Behaviour	45

	4.2.2	Test Results	46
4.3	Beam	B3	46
	4.3.1	Specimen Behaviour	46
	4.3.2	Test Results	47
4.4	Beam	B4	47
	4.4.1	Specimen Behaviour	47
	4.4.2	Test Results	48
4.5	Beam	B5	48
	4.5.1	Specimen Behaviour	48
	4.5.2	Test Results	49
4.6	Beam	B6	49
	4.6.1	Specimen Behaviour	49
	4.6.2	Test Results	50

CHAPTER 5 ANALYSIS AND DISCUSSION

5.1	Influence of the Amount of Independent Bent-Up Bars	69
5.2	Influence of the Anchorage Length in Independent	
	Bent-Up Bars	

5.3Influence of the Inclined Links72

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1	Conclusions	77
6.2	Recommendations	78

REFERENCES	79
BIBLIOGRAPYH	81
APPENDICES	82

LIST OF FIGURES

Figure No.	Description	Page
Figure 2.1	Simply supported beam	19
Figure 2.2	Shear stresses in a segment	19
Figure 2.3	Shear stresses in each sides of the segment	19
Figure 2.4	Resolved forces due the shear stress in the segment	20
Figure 2.5	Principal stresses	20
Figure 2.6	Stress path	20
Figure 2.7	Beam subjected to two point loads	21
Figure 2.8	Bending moment diagram	21
Figure 2.9	Shear failure type I	21
Figure 2.10	Shear failure type II	22
Figure 2.11	Shear failure type III	22
Figure 2.12	Shear failure type IV	22
Figure 2.13	Beam with longitudinal reinforcement	23
Figure 2.14	Dowel action of the reinforcement	23
Figure 2.15	Aggregate interlock in the concrete	23
Figure 2.16	Free-body diagram for the beam between support	24
	and first inclined crack	
Figure 2.17	Vertical stirrups/links as shear reinforcements	24
Figure 2.18	Vertical links are assumed to resist the crack in	24
	concrete at 45° from the horizontal axis of the beam	
Figure 2.19	Bent-up bars considered as members in tension and	25
	concrete as members in compression	

Figure 2.20Ultimate force in bent-up bars25

Figure 3.1	General Illustration of specimen	34
Figure 3.2	Beam B1	35
Figure 3.3	Closed view of steel reinforcement in beam B1	35
Figure 3.4	Beam B2	36
Figure 3.5	Closed view of steel reinforcement in beam B2	36
Figure 3.6	Beam B3	37
Figure 3.7	Closed view of steel reinforcement in beam B3	37
Figure 3.8	Beam B4	38
Figure 3.9	Closed view of steel reinforcement in beam B4	38
Figure 3.10	Beam B5	39
Figure 3.11	Closed view of steel reinforcement in beam B5	39
Figure 3.12	Beam B6	40
Figure 3.13	Closed view of steel reinforcement in beam B6	40
Figure 3.14	T16 as independent bent-up bar with 150 mm	41
	anchorage length	
Figure 3.15	T16 as independent bent-up bar with 50 mm	41
	anchorage length	
Figure 3.16	T10 as independent bent-up bar with 50 mm	41
	anchorage length	
Figure 3.17	Machine for steel bending	42
Figure 3.18	The Mould	42
Figure 3.19	Data logger	42
Figure 3.20	Hydraulic jack	43
Figure 3.21	Arrangement of testing apparatus	43
Figure 4.1	Propagation of crack with load increment	52
Figure 4.2	Diagonal crack at 85 kN	52
Figure 4.3	Diagonal crack restrain by vertical shear links	52
Figure 4.4	Load-deflection relationships for specimen B1	53
Figure 4.5	Shear crack development in specimen B1	54
Figure 4.6	First crack in specimen B2	54
Figure 4.7	Crack in constant moment region	54
Figure 4.8	Diagonal crack in specimen B2 at 85 kN	55
Figure 4.9	Flexural failures in specimen B2	55
Figure 4.10	Diagonal crack pattern at ultimate load	55

Figure 4.11	Load-deflection relationship for specimen B2	56
Figure 4.12	Development of crack in specimen B3	57
Figure 4.13	Crack in shear region	57
Figure 4.14	Diagonal crack restrain by independent bent-up bars	57
Figure 4.15	Load-deflection relationship for specimen B3	58
Figure 4.16	Stress-strain relationship in inner pair of	59
	independent bent-up bars	
Figure 4.17	Stress-strain relationships in outer pair of	60
	independent bent-up bars	
Figure 4.18	First crack development in specimen B4	61
Figure 4.19	Diagonal crack in specimen B4	61
Figure 4.20	Early diagonal crack development in specimen B4	61
Figure 4.21	Diagonal crack in specimen B4 restrain by	62
	independent bent-up bars	
Figure 4.22	Load-deflection relationship for specimen B4	63
Figure 4.23	Early crack development in specimen B5	64
Figure 4.24	Early shear crack development in specimen B5	64
Figure 4.25	Diagonal crack restrain by independent bent-up bar	64
Figure 4.26	Load-deflection relationship for specimen B5	65
Figure 4.27	First crack in specimen B6	66
Figure 4.28	Shear crack in shear region	66
Figure 4.29	Load-deflection relationship for specimen B6	67
Figure 4.30	Load-deflection relationship for specimens B1, B2, B3,	68
	B4, B5 & B6	
Figure 5.1	Load at first diagonal crack occurred	74
Figure 5.2	Ultimate load of specimens	75
Figure 5.3	Maximum deflection of specimens in mm	76

LIST OF TABLE

Table No.	Description	Page
Table 3.1	Summary of specimens	33
Table 4.1	Results for specimens B1, B2, B3, B4, B5 & B6	51
Table 5.1	Percentages different between ultimate loads of	73
	specimens compared to control specimen B1	
Table 5.2	Comparison of ultimate loads between design	73
	calculation and test	

LIST OF SYMBOLS

Symbol

Description

span)
span)
span)

- *α* Angle between a bent-up bar and the axis of a beam
- β Bond coefficient
- θ Angle
- Ø Bar diameter
- - Degree
- % Percent

LIST OF APPENDICES

Appendix No.	Title	Page
Appendix 1.0	Specimen analysis	82
Appendix 2.0	Concrete mix design form	87
Appendix 3.0	Experimental Results	89
Appendix 4.0	Shear Stress Analysis	96

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Shear failure in beams is caused by the diagonal cracks near the support. These cracks start at the bottom and extend towards the compression zone. Any form of effectively anchored reinforcement that intersects these diagonal cracks will be able to resist the stress to a certain extend. In practice, shear reinforcement is provided in the forms of vertical links or combination system of vertical links and bent-up bars.

In conventional system of shear resistance, vertical links play an important role in effectively restrains the formation of shear cracks in reinforced concrete beams. This system is preferred due to installing and fabricating simplicity. However, closed arrangement of shear links from various elements at elements intersection (near the support) causes problems in fixing. The use of bent-up bars along with vertical links as shear reinforcement had been practiced before. In situations where the tensile reinforcement is required to resist bending moment, only some of the rest was bent-up in the region of high shear to form the inclined legs of shear reinforcement. For example, beams which have four bars as the main tensile reinforcement at mid span, two bars may be bent-up diagonally and act as shear reinforcement, while the other two would be left to continue to the support.

However, its application has been less preferred nowadays. The difficulties to form the bent-up bars and required adequate amount of main reinforcement make it rarely used in construction. It is because, in beams with small number of main bars provided, the bent-up system is not suitable because insufficient amount of reinforcement would be left to continue to the support as required by the code of practice.

In this study, an alternative to overcome those problems is using independent bent-up bars. The application of independent bent up bars give strong resistant to the shear cracks due to better redistribution of internal forces across the cracks. In addition, this phenomenon leads to restrict the growth of the inclined cracks and maintain the interface of shear transfer effectively compared to conventional shear resistance system.

The selection of the amount of independent bent-up bars to be used is important. If the amount is too little, those bars will yield at the formation of inclined cracks and cause the beams to fail. This situation is dangerous to the structures. However, too much amount of independent bent-up bars caused a shear-compression failure without the yielding of independent bent-up bars. It meaning that, the beams element will fail in flexure. This situation is not suitable if the objectives of the study are to determine the shear characteristic and contribution of independent bent-up bars to the shear resistance. Besides, in real situation, excessive amount of independent bent-up bars cannot give profits to the project. Thus, an adequate amount of independent bent-up bars should be obtained sufficiently.

The anchorage length plays an important aspect of independent bent-up bars. If the anchorage length is too long, the position of the successive independent bent-up bars will be apart from the first layer. The question is that; can the inclined cracks passing the second layer and if it is not, it is such a waste to install those independent bent-up bars at the second layer. In this study, specimens are prepared with different anchorage length to study the anchorage length contribution to the shear resistance. The anchorage length is decided based on experience and engineering sense.

1.2 Problem Statement

The congestion near the support due to closed arrangement of shear links causes problems in fixing the reinforcements. For the application of bentup bars, it has been less preferred nowadays. The difficulties to form as bent-up bars and required adequate amount of main reinforcement make it rarely used in construction. In beams with small number of bars provided, the bent-up system is not suitable because insufficient amount of reinforcement would be left to continue to the support as required by the code of practice. Due to this problems as well as the conventional shear reinforcement, the use of independent bent-up bars and inclined links arranged in the high shear region have been studied.

1.3 Research Objectives

The objectives of this research are :

- To study the effectiveness of independent bent-up bars as shear reinforcement compared to conventional system.
- ii) To study the effectiveness of inclined links as shear reinforcement compared to conventional system.
- iii) To compare the shear resistance of independent bent-up bars plus nominal links with inclined links.
- iv) To study on the effectiveness of independent bent-up bars with different anchorage length.
- v) To study the effects of different amount of independent bent-up bars as shear reinforcement.

1.4 Scope of the Research

This study is based on experimental investigation within the scopes listed below:

- The test were carried out on six specimens of reinforced concrete beams of identical size of 2300 mm length, 200 mm width and 250 mm of overall depth.
- ii) All specimens were provided with identical amount of main reinforcements that is 3T16 with 2T10 as hanger bars.
- iii) All specimens were tested to failure with two point load at distance 650 mm from beam edges.

- iv) The concrete compressive strength for all specimens is in the ranges of 35 ± 0.5 N/mm².
- v) The inclination of independent bent-up bars and inclined links are 45° to the longitudinal axis of the beam.
- vi) The variables in the specimens are the amount of independent bent-up bars, anchorage length of independent bent-up bars, arrangement of independent bent-up bars and the inclined links as shear reinforcement.