DECLARATION OF THESIS /	UNDERGRADUATE PROJECT PAPER AND COPYRIGHT	
Author's full name : MUHAMM	AD LUTFI BIN OTHMAN	
Date of birth : 1 JULY 198	5	
Title : EFFECT OF BRIDGE BE	TEMPERATURE ON PRESTRESSED INTEGRAL	
Academic Session : 2008/2009		
I declare that this thesis is classifi	ed as:	
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*	
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*	
\checkmark OPEN ACCESS	I agree that my thesis to be published as online open access (full text)	
I acknowledged that Universiti 1	Teknologi Malaysia reserves the right as follows:	
 The thesis is the property The Library of Universiti Te of research only. The Library has the right 	of Universiti Teknologi Malaysia. eknologi Malaysia has the right to make copies for the purpose to make copies of the thesis for academic exchange.	
	Certified by :	
(WRITER'S SIGNATURE)	(SIGNATURE OF SUPERVISOR)	
(850701-01-6517)	DR. REDZUAN BIN ABDULLAH	
Date : 23 NOVEMBER 2009	Date : 23 NOVEMBER 2009	

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I hereby declare that I have read this project report and in my opinion this thesis is sufficient terms of scope and quality for the award of the degree of Master Engineering"

Signature :	
Name of Supervisor:	DR. REDZUAN BIN ABDULLAH
Date :	

THE EFFECT OF TEMPERATURE ON PRESTRESSED INTEGRAL BRIDGE BEAM

MUHAMMAD LUTFI BIN OTHMAN

A report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2009

"I declare that this report entitled "*The Effect of Temperature on Prestressed Integral Bridge Beam*" is a result of my own research except as cited in the references. The research has not been accepted for any degree and is not currently concurrently submitted in candidature of any other degree"

Signature	:	
Name	:	MUHAMMAD LUTFI BIN OTHMAN
Date	:	

Karya ini adalah dedikasi teristimewa buat emak yang dikasihi, Hamidah Bt Ahmad, abah yang disayangi, Othman Bin Mustaffa serta adik tercinta, Fatimah Azzahrah Bt Othman yang tidak pernah jemu membekalkan nasihat, kekuatan dan semangat untukku menghadapi liku-liku hidup seorang mahasiswa. Tidak lupa juga buat Maktok, Allahyarham Abahtok, Tok Mah, Tok Mat, sanak saudara serta semua teman-teman seperjuanganku di Universiti Teknologi Malaysia

iii

ACKNOWLEDGEMENT

Praise be to Allah S.W.T, after months of hard work and brainstorming, this masters project entitled "*The Effect of Temperature on Prestressed Integral Bridge Beam*" is finally completed. Thanks to Allah S.W.T as to his guidance and mercy, this thesis can at last be finished within the allocated time.

In this opportunity, I would like to express my gratitude towards my supervisor for this project, Dr. Redzuan Bin Abdullah for his advice and kindness in guiding me and my partner throughout the semester. Only Allah S.W.T can repay your kindness. I would also like to give my sincerest thanks to Ir. Mohamad Salleh Bin Yassin for his brilliant ideas, supportive critics, and also for being a huge helping hand in time of needs. On top of that, I would like to give my special thanks to my partner, Mohd Fairuz Omar for all the cooperation, help, and unwavering commitment throughout the development of this study.

Last but not least, thanks to my mother, father, sister, all my family members, all my friends and all the individuals for the moral support given.

ABSTRACT

Most bridges in Malaysia are pre-stressed concrete type and constructed as simply supported beam. Such structural form has maintenance problems due to the existence of joints and bearings which are easily deteriorated. Therefore, the elimination or the minimizing of bearings and joints is very important in order to increase the durability and life span of bridge structure. The Malaysian authority (Jabatan Kerja Raya) has now regulated that bridges with span length less than 60m should be designed and constructed as integral structure. The integral bridge however, is highly indeterminate and the behavior is affected by the change of temperature. The differential thermal effects can cause transverse bending at the middle pear of integral bridge which can result in the uplift. On the other hand, the continuous construction at the ends may result in crack. This research is aimed to develop a finite element model for integral bridge using LUSAS software. After the model is developed and verified, it is used to study the effect of temperature on prestress force in integral bridge beam. The longer the span of the beam, the more the temperature will affect the prestress change. Even in Malaysian condition where the temperature only ranges from 22 C to 35 C, it is important to consider temperature effects in designing integral bridge.

ABSTRAK

Kebanyakan jambatan di Malaysia ialah jenis konkrit pra-tegasan dan dibina sebagai rasuk sokong mudah. Struktur jenis ini kebiasaannya terdedah kepada masalah penyelenggaraan disebabkan kewujudan sambungan dan bering yang mudah memburuk. Oleh itu, adalah sangat penting untuk tidak menggunakan sambungan dan bering, atau setidak-tidaknya meminimakan penggunaannya agar kebolehkerjaan dan jangka hayat struktur jambatan boleh ditingkatkan. Pihak berkuasa tempatan (Jabatan Kerja Raya) kini telahpun mensyaratkan supaya jambatan dengan panjang kurang daripada 60m direkabentuk dan dibina sebagai struktur integral. Walaubagaimanapun, jambatan integral mempunyai ketidaktentuan yang tinggi selain dipengaruhi oleh kesan suhu. Kesan suhu yang berbeza boleh menyebabkan lenturan ke atas pada bahagian tengah jambatan. Disebabkan itu, sambungan integral pada hujung rasuk mempunyai kemungkinan untuk retak. Penyelidikan ini mensasarkan pembangunan model unsur terhingga untuk jambatan integral dengan menggunakan perisian LUSAS. Selepas model tersebut berjaya dibangunkan dan dibuktikan, model tersebut kemudiannya digunakan untuk mengkaji kesan suhu terhadap daya pra-tegas pada rasuk jambatan integral. Semakin panjang unjuran rasuk, semakin besar kesan suhu terhadap perubahan daya pra-tegas. Walaupun suhu hanya berubah antara 22 C hingga 35 C di Malaysia, kesan suhu masih sangat penting untuk diambilkira dalam merekabentuk jambatan integral.

TABLE OF CONTENT

CHAP

1

CONTENT

TIT	LE	i
DEC	CLARATION	ii
DEL	DICATION	iii
ACH	KNOWLEDGEMENT	iv
ABS	STRACT	V
ABS	STRAK	vi
TAE	BLE OF CONTENT	vii
LIST	T OF TABLES	xi
LIST	T OF FIGURES	xiv
LIST OF NOTATIONS		xviii
LIST	T OF APPENDICES	xix
INT	RODUCTION	1
1.1	Background Study	1
1.2	Problem Statement	2
1.3	Research Objectives	4
1.4	Research Questions	4
1.5	Scope of The Research	4

CHAP			CONTENT	PAGE
2	BAC	KGRO	UND STUDY OF BRIDGE ANALYSIS	6
	AND) INTEG	GRAL BRIDGE	
	2.1	Bridge		6
	2.2	Integra	l Bridges	7
		2.2.1	Integral Bridge Issues	8
		2.2.2	Integral Bridge Limitations	9
		2.2.3	Integral Bridge Construction	9
	2.3	Bridge	Deck Analysis	12
		2.3.1	Simply Supported Beam/Slab	13
		2.3.2	Series of Simply Supported Beams/Slabs	14
		2.3.3	Continuous Beam/Slab With Full Propping	
			During Construction	16
		2.3.4	Partially Continuous Beam/Slab	16
		2.3.5	Frame/Box Culvert (Integral Bridge)	19
	2.4	Articul	ation	23
	2.5	Bridge	Loading	26
		2.5.1	Dead and Superimposed Dead Loading	28
		2.5.2	Imposed Traffic Loading	29
		2.5.3	Imposed Loading Due to Road Traffic	29
		2.5.4	Thermal Loading	30

viii

СНАР				CONTEN	T	PAGE
3	RES	SEARCI	H METH	ODOLOGY	Z	34
	3.1	Introd	uction			33
	3.2	Proble	em Identifi	cation		36
	3.3	Data C	Collection			36
		3.3.1	Previous	s Research		36
		3.3.2	Adaptat	ion of Real	Integral Bridge Design	38
			3.3.2.1	Model La	yout	38
			3.3.2.2	Support C	Connection Details	39
	3.4	LUSA	S Structur	al Modellin	g	40
		3.4.1	Assump	tions		41
		3.4.2	Geomet	ry Definitio	n	42
		3.4.3	Attribut	es Definitio	n	42
			3.4.3.1	Meshing A	Attribute	43
			3.4.3.2	Geometrie	e Attribute	45
			3.4.3.3	Material A	Attribute	49
			3.4.3.4	Support A	ttribute	50
				3.4.3.4.1	Example Calculation	53
					For Spring Stiffness	
			3.4.3.5	Loading A	Attribute	54
		3.4.4	Prestres	s Definition	to BS5400	56
	3.5	Prestre	ess Change	e Determina	tionby Trial and Error	57
		Metho	od			
	3.6	Comp	arison of I	LUSAS and	Hand Calculation Trial	59
		and Er	ror Metho	od		
		3.6.1	Exampl	e Calculatio	on for Hand Calculation	60
			Method	l		
	3.7	Analys	is and Res	sult Interpre	tation	64

4	RES	ULT AI	ND DISCUSSION	65
	4.1	Introdu	uction	65
	4.2	Analys	sis Outline	65
	4.3	Compa	arison of Deflection	65
		4.3.1	Case 1: Temperature Gradient $(T_T > T_B)$	65
		4.3.2	Case 2: Temperature Gradient $(T_T < T_B)$	68
		4.3.3	Case 3: Uniform Temperature Increment	69
		4.3.4	Case 4: Uniform Temperature Decrement	71
	4.4	Prestre	ess Change in Prestressed Integral Bridge Beam	73
		4.4.1	Case 1: Temperature Gradient $(T_T > T_B)$	74
		4.4.2	Case 2: Temperature Gradient $(T_T < T_B)$	75
		4.4.3	Case 3: Uniform Temperature Increment	77
		4.4.4	Case 4: Uniform Temperature Decrement	79
	4.5	Discus	sion	82
5	CON	ICLUSI	ON AND RECOMMENDATION	83
	5.1	Conclu	usion	83
	5.2	Recom	nmendation	85
REFE	RENCI	ES		86
APPE	NDICE	S		87

CHAP

CONTENT

LIST OF TABLES

TA	BL	E	NO	
----	----	---	----	--

TITLE

3.1	Safety factor calculated according to each bridge	39
	span's Z_1 and Z_2	
3.2	General details for beam span 20m, 30m and 40m	39
3.3	Section properties for 20m, 30m and 40m integral	46
	bridge span	
3.4	Material properties	49
3.5	Values of spring stiffness	54
3.6	HA loading details	54
3.7	Trial and error method	59
3.8	Comparison of the reduction percentage between	64
	LUSAS and hand calculation	
4.1.1	Mid-span deflection comparison for 20m span	66
	integral bridge and simply supported bridge due to	
	temperature gradient $(T_T > T_B)$	
4.1.2	Mid-span deflection comparison for 30m span	67
	integral bridge and simply supported bridge due to	
	temperature gradient $(T_T > T_B)$	

TITLE

4.1.3	Mid-span deflection comparison for 40m span	67
	integral bridge and simply supported bridge due to	
	temperature gradient ($T_T > T_B$)	
4.2.1	Mid-span deflection comparison for 20m span	68
	integral bridge and simply supported bridge due to	
	temperature gradient ($T_T < T_B$)	
4.2.2	Mid-span deflection comparison for 30m span	68
	integral bridge and simply supported bridge due to	
	temperature gradient ($T_T < T_B$)	
4.2.3	Mid-span deflection comparison for 40m span	68
	integral bridge and simply supported bridge due to	
	temperature gradient ($T_T < T_B$)	
4.3.1	Mid-span deflection comparison for 20m span	70
	integral bridge and simply supported bridge due to	
	uniform temperature increment	
4.3.2	Mid-span deflection comparison for 30m span	70
	integral bridge and simply supported bridge due to	
	uniform temperature increment	
4.3.3	Mid-span deflection comparison for 40m span	70
	integral bridge and simply supported bridge due to	
	uniform temperature increment	
4.4.1	Mid-span deflection comparison for 20m span	72
	integral bridge and simply supported bridge due to	
	uniform temperature decrement	
4.4.2	Mid-span deflection comparison for 30m span	72
	integral bridge and simply supported bridge due to	
	uniform temperature decrement	
4.4.3	Mid-span deflection comparison for 40m span	72
	integral bridge and simply supported bridge due to	
	uniform temperature decrement	

TABLE NO

TITLE

4.5.1	Prestress decrement percentage due to temperature	74
	gradient (T _T >T _B) for 20m span integral bridge	
4.5.2	Prestress decrement percentage due to temperature	74
	gradient ($T_T > T_B$) for 30m span integral bridge	
4.5.3	Prestress decrement percentage due to temperature	74
	gradient ($T_T > T_B$) for 40m span integral bridge	
4.6.1	Prestress decrement percentage due to temperature	76
	gradient ($T_T < T_B$) for 20m span integral bridge	
4.6.2	Prestress decrement percentage due to temperature	76
	gradient ($T_T < T_B$) for 30m span integral bridge	
4.6.3	Prestress decrement percentage due to temperature	76
	gradient ($T_T < T_B$) for 40m span integral bridge	
4.7.1	Prestress decrement percentage due to uniform	78
	temperature increment for 20m span integral	
	bridge	
4.7.2	Prestress decrement percentage due to uniform	78
	temperature increment for 30m span integral	
	bridge	
4.7.3	Prestress decrement percentage due to uniform	78
	temperature increment for 40m span integral	
	bridge	
4.8.1	Prestress decrement percentage due to uniform	80
	temperature decrement for 20m span integral	
	bridge	
4.8.2	Prestress decrement percentage due to uniform	80
	temperature decrement for 30m span integral	
	bridge	
4.8.3	Prestress decrement percentage due to uniform	80
	temperature decrement for 40m span integral	
	bridge	

LIST OF FIGURES

FIGURE NO.

TITLE

2.1	Typical design of integral bridge	7
2.2	(a) Precast beams made integral over the interior	10
	support	
	(b) deck continuous over interior support and	10
	integral with abutments	
	(c) deck integral with abutments and pier	10
2.3	(a) geometry of integral bridge	11
	(b) deformed shape if bases are restrained against	11
	sliding	
	(c) bending moment diagram if bases are	11
	restrained against sliding	
	(d) deformed shape if bases are partially restrained	11
	against sliding	
2.4	Portion of bridge illustrating bridge engineering	13
	terms	
2.5	Simply supported beam or slab	14
2.6	Series of simply supported beam/slabs	14
2.7	Continuous beam or slab	15
2.8	Bending moment diagrams due to uniform loading	15
	of intensity	

TITLE

2.9	(a) Elevation view of partially continuous bridge	16	
	with full-depth diaphragm at intermediate supports		
	(b) Plan view from below of partially continuous	17	
	bridge with full-depth diaphragm at intermediate		
	supports		
2.10	Partially continuous bridge with continuity	17	
	provided only by the slab at intermediate supports		
2.11	Joint detail at intermediate support of partially-	18	
	continuous bridge of the type illustrated in figure		
	2.10		
2.12	(a) Bending moment due to selfweight	18	
	(b) Bending moment due to loading applied after		
	bridge has been made continuous	18	
2.13	Box culvert	19	
2.14	Three-span frame	19	
2.15	Typical distributions of bending moment	20	
2.16	Effect of thermal contraction of deck in frame	21	
	bridge		
2.17	Sliding support and run-on slab in frame bridge	21	
2.18	Composite precast and in-situ concrete frame	22	
	bridge		
2.19	Plan views showing articulation of typical bridges	24	
2.20	Uplift of bearings due to traffic loading		
2.21	Uplift of bearing due to transverse loading caused	25	
	by differential thermal effects		
2.22	(a) Beam on sliding bearing	31	
	(b) Beam fixed at both ends	31	
3.1	Methodology flow chart	35	
3.2	Overall elevation of the Charles D. Newhouse	37	
	research test setup		
3.3	Diaphragm details	37	

FIGURE NO.

TITLE

3.4	Longitudinal integral beam	38		
3.5	Integral beam-to abutment connection			
3.6	Integral beam-to abutment connection detail			
3.7	Integral bridge beam line			
3.8	Tendon profile line	42		
3.9	Line mesh assignment interface	44		
3.10	Active mesh applied to beam and abutments			
3.11	Arbitrary Section Property Calculator Interface			
3.12	20m integral bridge span cross-section			
3.13	30m integral bridge span cross-section			
3.14	40m integral bridge span cross-section			
3.15	Material assignment interface	50		
3.16	Structural support setting for roller	51		
3.17	Structural support setting for spring stiffness	52		
3.18	Visual of roller support and spring stiffness	52		
	support in LUSAS			
3.19	Four conditions of temperature effects	55		
3.20	Single tendon prestress assignment interface			
	according to BS5400			
3.21	Visual of assigned prestress at tendon	57		
3.22	Estimation of the effects of "unequal extreme fibre			
	temperatures" by the flexibility method			
4.1	Temperature gradient $(T_T > T_B)$ case for deflection	66		
	comparison			
4.2	Graph of mid span deflection versus temperature	67		
	gradient (T _T >T _B) for IB and SSB			
4.3	Temperature gradient $(T_T < T_B)$ case for deflection	68		
	comparison			
4.4	Graph of mid span deflection versus temperature	69		
	gradient $(T_T < T_B)$ for IB and SSB			

FIGURE NO.

TITLE

4.5	Uniform temperature increment case for deflection	
	comparison	
4.6	Graph of mid span deflection versus uniform	71
	temperature increment for IB and SSB	
4.7	Uniform temperature decrement case for	71
	deflection comparison	
4.8	Graph of mid span deflection versus uniform	73
	temperature decrement for IB and SSB	
4.9	Temperature gradient $(T_T > T_B)$ case for prestress	74
	change analysis	
4.10	Graph of prestress decrement percentage versus	75
	temperature gradient ($T_T > T_B$)	
4.11	Temperature gradient ($T_T < T_B$) case for prestress	75
	change analysis	
4.12	Graph of prestress increment percentage versus	77
	temperature gradient ($T_T < T_B$)	
4.13	Uniform temperature increment case for prestress	77
	change analysis	
4.14	Graph of prestress decrement percentage versus	79
	uniform temperature increment	
4.15	Uniform temperature decrement case for prestress	79
	change analysis	
4.16	Graph of prestress decrement percentage versus	81
	uniform temperature decrement	

LIST OF NOTATIONS

LUSAS	-	London University Stress Analysis System
		(engineering software)
d	-	Dry density of the backfill
	-	Coefficient of thermal expansion
G _s	-	Specific gravity
Т	-	Increased temperature
<i>p</i> '	-	Horizontal stress
h	-	Section depth
e _{max}	-	Eccentricity at mid-span
e _{min}	-	Eccentricity at support
А	-	Area
Ι	-	Moment of Inertia
М	-	Moment
T _T	-	Temperature at extreme top of fibre
T _B	-	Temperature at extreme bottom of fibre
E _c	-	Modulus of Elasticity
\mathbf{f}_{cu}	-	Characteristic strength
Es	-	Modulus of Elasticity
	-	Concrete creep coefficient
	-	Curvature
Coef.	-	Coefficient
Temp.	-	Temperature
IB	-	Integral bridge
SSB	-	Simply supported bridge

LIST OF APPENDICES

APPENDIC NO.

TITLE

PAGE

 A
 Design Example of Beam Section and Prestressing
 87

 Force by Microsoft Excel
 87

CHAPTER I

INTRODUCTION

1.1 Background Study

One of the most important structures is bridge. In Malaysia, most of the existing bridges were design as simple spans. In simple span construction, joints and bearings are parts of the bridge structure. It is indeed easier for the engineers to design and easier for the contractors to build simple span bridge but on the other hand, because of the joints between the spans of the bridge, it will not be able to provide a smooth riding surface to the public and furthermore a leaking joint will most certainly cause corrosion. The maintenance is also costly as the bearing needed to be replaced after every few years.

Today, integral bridges have been constructed all over the world instead of the conventional simple spans bridges. The advantages of integral bridge have been realized as early as the 60's. The use of integral deck eliminates the need for deck expansion joints and bearings. More significantly, maintenance costs are also reduced since deck joints, which allow water to leak onto substructures elements and accelerate deterioration, are totally eliminated. In addition, future widening or bridge replacement becomes easier, since the simple design of the integral abutment lends itself to simple structural modification.

1.2 Problem Statement

In recent years, it has been established that a significant portion of the world's bridges are not performing as they should. In some cases, bridges are carrying significantly more traffic load than originally intended. However, in many others, the problem is one of durability. This is often associated with joints that are leaking or with details that have resulted in chloride-contaminated water dripping onto substructures. Problems have also been reported with post-tensioned concrete bridges in which inadequate grouting of the ducts has lead to corrosion of the tendons.

The new awareness of the need to design durable bridges has led to dramatic changes of attitude towards bridge design. There is now a significant move away from bridges that are easy to design towards bridges that will require little maintenance. The bridges that were easy to design were usually determinate, e.g. simply supported spans and cantilevers. However, such structural forms have many joints which are prone to leakage and also have many bearings which require replacement many times over the lifetime of the bridge.

The move now is towards bridges which are highly indeterminate and which have few joints or bearings. The structural forms of bridges are closely interlinked with the methods of construction. The methods of construction in turn are often dictated by the particular conditions on site. For example, when a bridge is to be located over an inaccessible place, such as a railway yard or a deep valley, the construction must be carried out without support from below. This immediately limits the structural forms to those that can be constructed in this way. The method of construction also influences the distributions of moment and force in a bridge. For example, in some bridges, steel beams carry the self weight of the deck while composite steel and in-situ concrete carry the imposed traffic loading.

Integral bridge is advantageous in term of maintenance and long term planning if compared to the conventional bridge. This type of bridge can also be seen as the future bridge as it is stiffer and has been observed that the deflection and moments can be greatly reduced as in case of integral bridge. The elimination or minimizing of bearings and joints is important as they are fragile elements and represent the weakest links in bridge structures. Joints are expensive to buy, install, maintain and repair. Sometimes repair costs can run as high as replacement costs. Successive paving will ultimately require that joints be replaced or raised. Even waterproof joints will leak over time, allowing water salt-laden or otherwise, to pour through the joints accelerating corrosion damage to girder ends bearings and supporting reinforced concrete substructures. Accumulated dirt, rocks and trash fill Elastomeric glands leading to failure.

Bearings are also expensive to buy and install and more costly to replace. Over time, steel bearings may tip over and seize up due to loss of lubrication or buildup of corrosion. Elastomeric bearings can split and rupture due to unanticipated movements or ratchet out of position. Teflon sliding surfaces are fragile for bridge applications and can fail prematurely due to excessive wear from dirt and other contaminants, or due to poor fabrication and construction tolerances. Pot bearings also suffer frequent damage due to poor fabrication and construction techniques.

Integral bridges are characterized by monolithic connection between the deck and the substructure. Such bridges are the answer for small and medium length bridges where bearings and joints are either eliminated or reduced to minimum. The integral bridge concept is an excellent option to incorporating reduced inspection and maintenance features in the bridge structures. However, it is more complicated to design and the secondary restraint moments can develop at the connection due to creep, shrinkage, and thermal effects.

In Malaysia, this type of bridge is still not widely used because of its complexity and the lack of knowledge and experience within Malaysian construction industry.

The purpose of experimental study presented in this paper was to compare the restraint moments that developed during the early ages of continuity to the predicted restraint moments using finite element program, LUSAS. It is important to be able to accurately predict the restraint moment because:

- i. Underprediction leads to unconservative designs and the potential for damage to cracking at the continuity connection
- ii. Overprediction may force the designer to use simple span design instead of continuous design

1.3 Research Objectives

The objectives of this research are:

- 1. To study the effect of temperature gradient on the prestressing force in prestressed integral bridge beam
- 2. To study the effect of uniform temperature change on the prestressing force in prestressed integral bridge beam
- 3. To determine whether temperature effects can be neglected in integral bridge design considering Malaysian condition

1.4 Research Questions

By the end of this research, it is aimed that the following questions will be answered

- 1. How integral bridge response to temperature effect?
- 2. How does the prestress force reacts to temperature loadings?
- 3. Is it true that integral bridge beam is better than simply supported beam?
- 4. Can the temperature effects be neglected at certain span of the integral bridge?

1.5 Scope of The Research

In order to finish this research within the limited time, the following scopes are being considered:

a. The simulation of the integral bridge will be developed using LUSAS program and will be verified by consulting superior LUSAS users

- b. The temperature gradient is fixed between 0 C to 40 C and the span length between 20m to 40m
- c. Typical design of integral bridge consists of the beams, piers and abutments is used
- d. The temperature effect studied only consider Malaysian condition