DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT				
Autho	r's full name : PEYMAN N	IAHMOUDIAN JOUNEGHANI		
Date	of birth : 06/01/1980			
Title		TIES OF ACRYLIC POLYMER IODIFIED CONCRETE		
	2000/2010 1			
Idec	lare that this thesis is classified as:			
	CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*		
	RESTRICTED	(Contains restricted information as specified by the Organization where research was done)*		
	Ú OPEN ACCESS	I agree that my thesis to be published as online open access (full text)		
lacknow	/ledged that Universiti Teknologi N	lalaysia reserves the right as follows :		
1.				
2.	of research only.	i Malaysia has the right to make copies for the purpose		
3.	The Library has the right to make	e copies of the thesis for academic exchange.		
		Certified by:		
-	SIGNATURE	SIGNATURE OF SUPERVISOR		
	F08481884	Assoc. Prof. Dr. Mohammad Bin Ismail		
(IC NO./PASSPORT NO.)		NAME OF SUPERVISOR		
Da	ate: NOVEMBER 2009	Date: NOVEMBER 2009		
NOTES ·	* If the thesis is CONFI	DENTAL or RESTRICTED, please attach with the letter from		

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil - Structure)."

Signature	:
Name of Supervisor	: Assoc. Prof. Dr. Mohammad Bin Ismail
Date	: November 2009

PROPERTIES OF ACRYLIC POLYMER MODIFIED CONCRETE

PEYMAN MAHMOUDIAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil - Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER, 2009

I declare that this project entitled "*Properties of Acrylic polymer-modified concrete*" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature:Name of Author: PEYMAN MAHMOUDIANDate: November 2009

To my beloved parents and wife

ACKNOWLEDGEMENT

I would like to express my greatest appreciation to my supervisor, Assoc. Prof. Dr. Mohammad Bin Ismail, for his generous guidance, advice and motivation throughout this research.

A special thank dedicated to my beloved parents and family, for their continuing financial and morale supports throughout my studies. Finally, my sincere appreciation also extends to all my friends and Mr. Bala student of PhD and Mr. Yong student of bachelor, the structural laboratory personnel, those who were directly or indirectly involved in the process of producing this research report, for their generous assistance, useful views and tips.

Without their support and contribution, this research project would not have been possible.

ABSTRACT

Conventional concrete has a number of limitations, such as low flexural strength, low failure strain, susceptibility to frost damage and low resistance to chemicals. These drawbacks are well recognized by the engineer and can usually be allowed for in most applications. In certain situations, these problems can be solved by using materials which contain an organic polymer or resin (commercial polymer) instead of or in conjunction with Portland cement. The aim of this work was to study the properties of concrete containing different percentages of polymer additive and to find the optimum polymer additive percentage at fresh and hardened states. The polymer was added accordingly with the percentage of 1 %, 2%, 3%, 5% and 10% by weight of cement. Concrete cubes, cylindrical and beams were tested for compressive strength, tensile strength and flexural strength at the age of 7, 28and 60 days. The results showed that increasing amount of polymer more than 2% decrease workability, compressive strength, indirect tensile strength and flexural strength of concrete 2% polymer mixture showed better result than other percentage and even better than control mix in flexural strength. SEM result shows that adding more than 2% polymer in concrete increase porosity and hence decrease compressive strength of concrete in. Because of relatively good result in flexural strength and brittleness parameter, it is postulated that this material can be used for overlay structure or pavement.

Abstrak

Beton konvensional mempunyai beberapa keterbatasan, seperti kekuatan lentur rendah, kegagalan rendah ketegangan, kerentanan terhadap kerosakan dan rendah embun beku tahan terhadap bahan kimia. Baik kekurangan ini diakui oleh para jurutera dan biasanya boleh dibenarkan untuk di sebahagian besar aplikasi. Dalam situasi tertentu, masalah ini boleh diselesaikan dengan menggunakan bahanbahan yang mengandungi polimer organik atau resin (polimer komersial) sebagai pengganti atau bersama dengan simen Portland. Objektif pekerjaan ini adalah untuk mengkaji sifat-sifat konkrit yang mengandungi peratusan yang berbeza aditif polimer dan mendapati peratusan aditif polimer optimum di negara bahagian segar dan mengeras. Polimer ditambah sesuai dengan peratusan 1%, 2%, 3%, 5% dan 10% daripada berat simen. Beton kubus, silinder dan balok diuji untuk kekuatan tekan, kekuatan tarik dan kekuatan lentur pada usia 7, 28and 60 hari. Keputusan kajian menunjukkan bahawa peningkatan jumlah polimer lebih daripada 2% penurunan kemungkinan untuk dilaksanakan, kekuatan tekan, kekuatan tarik tak langsung dan kekuatan lentur konkrit 2% polimer campuran menunjukkan keputusan yang lebih baik daripada peratusan lain dan bahkan lebih baik daripada kawalan campur dalam kekuatan lentur. Keputusan SEM menunjukkan bahawa menambah lebih daripada 2% konkrit polimer dalam meningkatkan porositas dan dengan demikian mengurangkan kekuatan tekan beton masuk Kerana keputusan relatif baik dalam kekuatan dan kerapuhan dilentur parameter, maka mendalilkan bahawa bahan ini boleh digunakan untuk paparan struktur atau trotoar.

CONTENTS

CHAPTER	SUBJECT	PAGE
	THESIS TITLE	ii
	DECLARATION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	V
	ABSTRACT	vi
	ABSTRAk	vii
	CONTENTS	viii
	LIST OF FIGURES	xi
	LIST OF TABLES	xiii
CHAPTER 1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Importance of research	2
	1.3 Objective of Study	3
	1.4 Scope of Research	3
	1.5 Thesis layout	4
CHAPTER 2	LITERATURE REVIEW	5
	2.0 Introduction	5
	2.1 Strength	7
	2.2 Durability	9
	2.2.1 Permeability	16

		2.3.1 Polymer-Portland cement concrete	19
		2.3.2 Water-Soluble Polymer-Modified Systems	21
		2.3.3 Workability	22
		2.3.4 Strength Characteristic	22
	2.4	Summary of the Physical Properties of Polymer	
		Modified Cementitious Materials	23
CHAPTER 3	MET	HODOLOGY	24
	3.0	Introduction	24
	3.1	Materials	26
		3.1.1 Cement	26
		3.2.1 Normal consistency of ordinary and modif	fied
		cement pastes	27
		3.2.1.1 Procedure	28
		3.2.1.2 Quantities of Materials	29
		3.2.2 Workability	30
		3.2.2.1 Slump test	30
		3.2.2.1.1 Procedure	30
		3.2.2.1.2 Quantities of material	32
	3.3	HARDENED CONCRETE	32
		3.3.1 Mix Design	33
		3.3.2 Quantities of material	33
		3.3.3 Preparing of polymer	34
		3.3.4 Compression strength	35
		3.3.5 Tensile strength	36
		3.3.6 Flexural strength	39
		3.3.7 Durability Tests	40
		3.3.7.1 Drying shrinkage	40
		3.3.7.2 SEM	42
		3.3.7.2.1 Sample preparation	43

47

	4.0	Introduction	47
	4.1	Effect of polymer additive to the fresh properties	48
	4.2	Effect of polymer additive to Strength properties	50
		4.2.1 Compressive strength	50
		4.2.2 Indirect tensile strength	52
		4.2.2 Flexural strength	55
	4.3	Effect of polymer additive to durability Development	
		4.3.1 Drying shrinkage	59
		4.3.2 Microstructure of concrete	60
CHAPTER 5	CON	CLUSIONS AND RECOMMENDATIONS	65
	5.0	Conclusion	65
	5.1	Recommendation	66
REFERENCE			67

LIST OF FIGURES

FIGURE NO. TITLE`

PAGE

2.1	Influence of w/c ratio on the permeability of	13
	Cement paste and concrete	
2.2	Composition of sealed and fully hydrated Portland cement paste	13
2.3	Comparison of the microstructure of (a) a high water/cement ratio	15
	and (b) a low water/binder ratio concrete.	
2.4	Capillary absorption	17
2.5	Polymers and monomers for cement modifiers	22
2.6	Relationship between dry curing period and drying shrinkage of	23
	Methyl cellulose- modified mortars	
3.1	Slump procedure	29
3.2	Slump cone (mould)	29
3.3	Polymer before grinding	31
3.4	Polymer after grinding	32
3.5	Compression machine	33
3.6	Apply load on cylindrical specimen	35
3.7	The Crushed cylindrical specimen	35
3.8	Flexural test	36
3.9	The Tested Cubes	36
3.10	Drying shrinkage samples	37
3.11	Typical TGA system	45
4.1	Effect of polymer addition on normal consistency	49
4.2	Normal consistency instrument	49
4.3	Comparison of compressive strength of control specimens	50
4.4	Comparison of indirect tensile strength of control specimens	52
4.5	Indirect tensile Strength For 2% Replacement Compared to Control	53
4.6	Comparison of flexural strength of control specimens	56
4.7	Flexural Strength For 2% polymer additive Compared to Control mix	56
4.8	Result of drying shrinkage	59

4.9	SEM for control mix	60
4.10	SEM for 1% polymer additive	61
4.11	SEM for 2% polymer additive	61
4.12	SEM for 3% polymer additive	61
4.13	SEM for 5% polymer additive	62
4.14	SEM for 10% polymer additive	62
4.15	SEM for Polymer in concrete	62
4.16	TGA result	64

LIST OF TABLES

TABLE NO. TITLE`

PAGE

2.1	Typical Properties of Normal-Strength Concrete	6
3.1	Properties of Cement	26
3.2	Standard consistency test	29
3.3	Mix design	33
4.1	Results of slump test	48
4.2	Results of compressive strength	51
4.3	Results of Indirect tensile strength	54
4.4	Results of Flexural strength	57

CHAPTER 1

INTRODUCTION

1.1 Introduction

Portland cement concrete is composed of three basic components: Portland cement, aggregates, and water. Mortar and concrete made with Portland cement has been a popular construction material in the world for the past 170 years or more (Ohama, 1995). In addition, there are a host of other materials, called additives that may be added to obtain special properties. These include air entraining agents, accelerators, retarders, carbon black, fly ash, pozzolans, silica fume, water-reducing agents, polymer and super plasticizers, among others.

Conventional Portland cement concrete has a number of limitations, such as low flexural strength, low failure strain, susceptibility to frost damage and low resistance to chemicals. These drawbacks are well recognized by the engineer and can usually be allowed for in most applications. In certain situations, these problems can be solved by using materials which contain an organic polymer or resin (commercial polymer) instead of or in conjunction with Portland cement. These relatively new materials offer the advantages of higher strength, improved durability and good resistance to corrosion, reduced water permeability and greater resistance to damage from freeze-thaw cycles.

One such attempt is polymer-modified (or polymer cement) mortar or concrete, which is made by modifying ordinary cement mortar or concrete with polymer additives such as latexes, dispersible polymer powders, water-soluble polymers, liquid resins, and monomers. Polymer-modified mortars and concretes have a monolithic co-matrix in which the organic polymer matrix and the cement gel matrix are homogenized.

It was used one kind of waste water- soluble polymer and adding to the concrete with several percentage of cement.

Currently, polymers are used primarily to enhance the durability of concrete. This can be done in four ways (Ohama, 1995):

- i) Protective coating and sealants, which are applied on concrete surface, to prevent the ingress of moisture and harmful chemical
- ii) Adhesives for bonding in repair and structural joints
- iii) Impregnation of hardened concrete with a monomer followed by in situ polymerazation(*polymer-impregnated concrete*)
- iv) Incorporation of polymer into the concrete mix(*polymer-modified concrete*)

1.2 Importance of research

Concrete is a famous construction material in the world. Meanwhile, continuous efforts towards improving concrete are still underway. Strength and durability are the most important properties normally targeted for improvements.

Although concrete is strong and durable, but it has a lot of defects, for instance low flexural strength, low tensile strength, low resistance to chemical attack as well as freeze-thaw.

Concrete products used in the renovation and refurbishing structure provide a durable hard wearing surface or decorative finish which serve as typical key properties. Today, polymer-based materials or polymer-containing cementitious materials have been utilized in many industrial and non industrial buildings.

1.3 Objective of Study

This study was conducted to perform some defined in advance objectives. These objectives are:

- To study the properties of concrete in fresh state containing different percentages of polymer additive and to identify the optimum polymer additive percentage by conducting, consistency and workability.
- ii) To investigate the effect of polymer additive to the strength performance and durability performance of polymer-modified concrete. Parameters assessed were Compressive strength, Tensile strength, Flexural strength, Drying shrinkage, SEM and TGA.

1.4 Scope of Research

The scope of research for this project involves the discussion of the effect of polymer additive strength of concrete. Strength characteristic is important because it is related to several other important properties which are more difficult to measure directly This study concentrates mainly on the strength and durability of concrete. With regard to this matter, the improvement of compression strength of polymer concrete was studied. Addition of polymer by 1%, 2%, 3%, 5% and 10% by weight of cement were studied on compressive, tensile and flexural performance. Concrete tests are conducted on the concrete samples at the specific ages. All the strength tests are limited to the ages of 7, 28 and 60 days.

1.5 Thesis layout

This study consists of 5 chapters. Following chapter 1 the concise information on a available literature of polymer modified concrete is presented in chapter 2.chapter 3 the adoptive methodology used in this thesis, containing design of mix proportion and likewise preparation and casting of test samples and detail of testing method. Result are presented in chapter 4 which consisted of result of normal consistency ,setting time ,slump, compacting factor, compressive and tensile and flexural strength, drying shrinkage ,TGA ,SEM (Durability tests) of concrete. Finally in chapter 5 will be presented conclusion and recommendation for current and future experimental work.