UNIVERSITI TEKNOLOGI MALAYSIA

Author's full name :	W CHING CHING
Date of birth : 08 JU	NE 1984
Title : SEISM	MIC VULNERABILITY STUDY OF
GUIL	LEMARD RAILWAY BRIDGE
2007/	2006
Academic Session: <u>2007/2</u>	2008
I declare that this thesis is class	sified as :
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
√ OPEN ACCESS	l agree that my thesis to be published as online open access (full text)
I acknowledged that Universit	i Teknologi Malaysia reserves the right as follows:
 The thesis is the proper The Library of Universiti of research only. 	ty of Universiti Teknologi Malaysia. Teknologi Malaysia has the right to make copies for the purpose
3. The Library has the righ	It to make copies of the thesis for academic exchange.
	Certified by :
SIGNATURE	SIGNATURE OF SUPERVISOR
840608-08-5770	PROF. DR. AZLAN ADNAN
(NEW IC NO. /PASSPORT	NO.) NAME OF SUPERVISOR

NOTES :

*

If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I/We* hereby declare that I/We* have read this project report and in my/our* opinion this project report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil – Structure)."

Signature	:
Name of Supervisor	· PROF. DR. AZLAN ADNAN
Date	25 JUNE 2008

* Delete as necessary

SEISMIC VULNERABILITY STUDY OF GUILLEMARD RAILWAY BRIDGE

TEOW CHING CHING

A project report submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2008

I declare that this project report entitled "Seismic Vulnerability Study of Guillemard Railway Bridge" is the result of my own except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidate of any degree.

Signature	:	
Name	:	TEOW CHING CHING
Date	:	25 JUNE 2008

For my beloved family

ACKNOWLEDGEMENT

The author is deeply indebted to her supervisor, Prof. Dr. Azlan Adnan whose help, stimulating suggestions and encouragement helped her in all the time of the study and preparation of this project.

The author wishes to thank Mr. Meldi Suhatril, for his helpful guidance.

The author has furthermore to thank all the lecturers and staffs of Faculty of Civil Engineering UTM, for their advice and assistance throughout the study.

Sincere appreciation also extends to all her friends for their help, support, interest and valuable hints.

Last but not least, the author would like to express her deepest gratitude to her parents, Teow Ka Heng and Teoh Bee Lan, for unconditional support and encouragement to pursue her interest. Her sisters, Teow Ying Ying and Teow Pei Pei, for their understanding and love.

ABSTRACT

Malaysia is surrounded by countries that had experienced many great earthquakes. Records have shown that we do sometimes experience some off-set tremors originating from the Indonesian zone. Therefore it would be unwise to totally ignore the effects of earthquakes on structures. The purpose of this study is to present the results of the case study of the earthquake response on the Guillemard Railway Bridge. The bridge had been remodeled using SAP 2000. The behavior of Guillemard Railway Bridge under the earthquake loading can be obtained by analyzing the Free Vibration Analysis, Time History Analysis and Response Spectrum Analysis with different levels of ground acceleration (0.074g, 0.15g, 0.25g and 0.35g), in different directions (x, y, z). Moment and shear force capacities for each element are calculated to enable comparison to be made between element capacity and element loading. The purpose is to check to what extend Guillemard Railway Bridge could survive under different ground acceleration and to identify the critical part of the bridge under earthquake loading. From the results, it is noticed that the column failure could occur even in low intensity earthquake acceleration. Deck failure is caused by its inability to hold the design ultimate resistance moment of earthquake loading. Earthquake which happens in horizontal transverse direction has very little effect to the seismic performance of the bridge deck. The bridge deck may fail when earthquake happens in vertical direction, under all various earthquake intensities. For horizontal longitudinal earthquake direction, the bridge deck is safe up to 0.15g earthquake intensity. The most earthquake-vulnerable part of Guillemard Railway Bridge is the fourth span and the fourth pier. Moreover, the top chords at the highest point of the truss and the connection between the spans also most likely to be vulnerable if earthquake occur.

ABSTRAK

Malaysia dikelilingi oleh negara-negara yang kerap mengalami gempa bumi. Rekod telah menunjukkan kesan gempa bumi dari kawasan gempa bumi Indonesia kadang kala dirasai juga. Maka, pengabaian kesan gempa bumi ke atas struktur adalah perbuatan yang kurang bijak. Tujuan kajian ini adalah untuk mempersembahkan keputusan respon Guillemard Railway Bridge terhadap gempa bumi. Jambatan ini telah dimodelkan semula dengan menggunakan SAP2000. Kelakuan Guillemard Railway Bridge di bawah pembebanan gempa bumi boleh diperolehi dengan menjalankan analisis Free Vibration, analisis Time History dan analisis Response Spectra, dengan mengenakan pelbagai keamatan gempa bumi (0.074g, 0.15g, 0.25g dan 0.35g) pada arah yang berlainan (x, y, z). Kapasiti momen dan kapasiti daya ricih untuk setiap elemen telah dikira supaya perbandingan dapat dibuat antara kapasiti elemen dengan pembebanan elemen. Tujuannya untuk menyemak kepada tahap manakah Guillemard Railway Bridge sanggup bertahan di bawah pelbagai keamatan gempa bumi dan juga untuk mengenalpastikan bahagian jambatan yang paling kritikal di bawah pembebanan gempa bumi. Daripada keputusan yang diperolehi, didapati bahawa kegagalan tiang berlaku walaupun untuk bumi berkeamatan rendah. Kegagalan papak pula disebabkan gempa ketidakmampuan untuk menampung momen rintangan muktamad daripada pembebanan gempa bumi. Gempa bumi yang berlaku pada arah datar-melintang meninggalkan kesan yang sangat kecil kepada papak jambatan. Papak jambatan mungkin akan gagal apabila gempa bumi berlaku pada arah menegak, di bawah pelbagai keamatan gempa bumi. Untuk gempa bumi yang verlaku pada arah datarmembujur, papak jambatan adalah selamat sehingga 0.15g keamatan gempa bumi. Bahagian jambatan yang paling lemah ketika dikenakan gempa bumi ialai rentang keempat dan tiang keempat. Tambahan pula, bahagian atas pada titik tertinggi yang terletak kerangka jambatan sambungan pada dan antara rentang juga berkemungkinan besar gagal jika berlakunya gempa bumi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	X
	LIST OF FIGURES	xi
	LIST OF APPENDICES	xvii
	LIST OF SYMBOLS	xviii
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	2
	1.3 Objective of the Study	3
	1.4 Scope of the Study	3
2	LITERATURE REVIEW	5
	2.1 Introduction	5
	2.2 Basic Seismology	5

2.3	Seismic Waves	6
2.4	Measurement of Earthquake Magnitude and	
	Intensity	8
2.5	Ground Motion	10
	2.5.1 Peak Ground Motion	10
	2.5.2 Duration of Strong Motion	11
	2.5.3 Frequency Content	11
2.6	Dynamic Analysis of Bridge	11
2.7	Response Spectrum Analysis	13
	2.7.1 Single Mode Spectral Analysis	14
	2.7.2 Uniform Load Method	14
	2.7.3 Multimode Spectral Analysis	15
	2.7.4 Modal Combination	16
2.8	Nonlinear Analysis of Bridge Structure	17
2.9	Seismic Performance of Bridges	18
2.10	Earthquake Damage to Bridges	20
	2.10.1 Effects of Changes in Condition	21
	2.10.2 Effects of Structural Configuration	22
	2.10.3 Effects of Unseating at Expansion	
	Joints	23
	2.10.4 Damage to Superstructures	24
	2.10.5 Damage to Bearings	25
	2.10.6 Damage to Columns	26
	2.10.7 Damage to Beams	27
	2.10.8 Damage to Abutments	28
2.11	Design Key Concept	29
MET	THODOLOGY	31
3.1	Introduction	31
3.2	Bridge Description	31

3.3Section Properties40

	3.4	Seismic Excitation	41
	3.5	Assumptions	42
	3.6	Dynamic Linear Analysis	42
		3.6.1 Free Vibration Analysis	43
		3.6.2 Response Spectrum Analysis	44
		3.6.3 Time History	44
	3.7	Dynamic Nonlinear Analysis	44
	3.8	Permissible Stress Method	45
4	RES	ULTS AND DISCUSSIONS	52
	4.1	Introduction	52
	4.2	Free Vibration Analysis	52
	4.3	Base Reaction	58
	4.4	Deck Analysis	68
	4.5	Column Analysis	73
	4.6	Shear Force Diagram and Bending Moment	
		Diagram	77
5	CON	ICLUSIONS AND RECOMMENDATIONS	82
	5.1	Conclusions	82
	5.2	Recommendations for Further Research	83
REFERENCE	ES		85
Appendix A			87-94

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Modified Mercalli Intensity Scale	9
3.1	Section Properties	40
4.1	Natural Period for Guillemard Railway Bridge	53
4.2	Comparison between Element Loading and Element	
	Capacity at Deck	69

LIST OF FIGURES

TITLE

PAGE

2.1	Epicenter	6
2.2	Types of seismic waves	8
2.3	Bull Creek Canyon Channel Bridge. Damage in the 1994 Northridge earthquake	21
2.4	Geometry and collapse of the route 14/5 separation and overhead in the 1994 Northridge Earthquake, (a) configuration; (b) photograph of collapse	23
2.5	Buckling of braces near Pier 209 of the Nanshin Expressway in the 1995 Hyogo-Ken Nanbu earthquake	24
2.6	Buckling of cross members in the upper chord of the Rokko Island Bridge in the 1995 Hyogo-Ken Nanbu earthquake	25
2.7	Hamate Bypass superstructure rotations as a result of bearing failures in the 1995 Hyogo-Ken Nanbu earthquake	26
2.8	Failure of columns of the route 5/210 interchange during the 1971 San Fernando earthquake	27
2.9	Outrigger damage in the 1989 Loma Prieta earthquake	28
2.10	Rotation of abutment due to liquefaction and lateral spreading during the 1991 Costa Rica earthquake	29

3.1	Elevation	32
3.2a	Main truss girder and representative cross section (top chord member)	33
3.2b	Main truss girder and representative cross section (vertical member)	33
3.2c	Main truss girder and representative cross section (bottom chord member)	34
3.3	Top chord	34
3.4	Bottom chord	35
3.5a	Face of Pier 1	35
3.5b	Section of Pier 1	36
3.6a	Face of Pier 2	36
3.6b	Section of Pier 2	37
3.7a	Face of Pier 3	37
3.7b	Section of Pier 3	38
3.8a	Face of Pier 4	38
3.8b	Section of Pier 4	39
3.9	Time history recorded from Kota Bahru station	41
3.10	Response Spectrum	42
3.11	Three-dimensional model	47
3.12	Free vibration analysis flow diagram	48
3.13	Response spectrum analysis flow diagram	49
3.14	Time history analysis flow diagram	50
3.15	Seismic evaluation flow diagram	51
4.1	Mode 1 (natural period 0.35939s)	53

4.2	Mode 2 (natural period 0.27496s)	54
4.3	Mode 3 (natural period 0.25135s)	54
4.4	Mode 4 (natural period 0.25035s)	55
4.5	Mode 5 (natural period 0.16596s)	55
4.6	Mode 6 (natural period 0.15661s)	56
4.7	Mode 7 (natural period 0.15529s)	56
4.8	Mode 8 (natural period 0.12211s)	57
4.9	Mode 9 (natural period 0.11938s)	57
4.10	Mode 10 (natural period 0.11395s)	58
4.11a	Comparison of base shear X in horizontal longitudinal earthquake direction	59
4.11b	Comparison of base shear X in horizontal transverse earthquake direction	59
4.11c	Comparison of base shear X in vertical earthquake direction	60
4.12a	Comparison of base shear Y in horizontal longitudinal earthquake direction	60
4.12b	Comparison of base shear Y in horizontal transverse earthquake direction	61
4.12c	Comparison of base shear Y in vertical earthquake direction	61
4.13a	Comparison of base shear Z in horizontal longitudinal earthquake direction	62
4.13b	Comparison of base shear Z in horizontal transverse earthquake direction	62
4.13c	Comparison of base shear Z in vertical earthquake direction	63
4.14a	Comparison of base moment X in horizontal longitudinal earthquake direction	63

4.14b	Comparison of base moment X in horizontal transverse earthquake direction	64
4.14c	Comparison of base moment X in vertical earthquake direction	64
4.15a	Comparison of base moment Y in horizontal longitudinal earthquake direction	65
4.15b	Comparison of base moment Y in horizontal transverse earthquake direction	65
4.15c	Comparison of base moment Y in vertical earthquake direction	66
4.16a	Comparison of base moment Z in horizontal longitudinal earthquake direction	66
4.16b	Comparison of base moment Z in horizontal transverse earthquake direction	67
4.16c	Comparison of base moment Z in vertical earthquake direction	67
4.17	Shear versus earthquake intensity (horizontal longitudinal earthquake direction)	70
4.18	Shear versus earthquake intensity (horizontal transverse earthquake direction)	70
4.19	Shear versus earthquake intensity (vertical earthquake direction)	71
4.20	Moment versus earthquake intensity (horizontal longitudinal earthquake direction)	71
4.21	Moment versus earthquake intensity (horizontal transverse earthquake direction)	72
4.22	Moment versus earthquake intensity (vertical earthquake direction)	72
4.23	N-Mx column interaction chart (0.074g horizontal longitudinal earthquake direction)	73
4.24	N-Mx column interaction chart (0.15g horizontal longitudinal earthquake direction)	74

4.25	N-Mx column interaction chart (0.25g horizontal longitudinal earthquake direction)	74
4.26	N-Mx column interaction chart (0.35g horizontal longitudinal earthquake direction)	75
4.27	N-My column interaction chart (0.074g horizontal longitudinal earthquake direction)	75
4.28	N-My column interaction chart (0.15g horizontal longitudinal earthquake direction)	76
4.29	N-My column interaction chart (0.25g horizontal longitudinal earthquake direction)	76
4.30	N-My column interaction chart (0.35g horizontal longitudinal earthquake direction)	77
4.31a	Shear force diagram of deck at 0.074g	78
4.31b	Shear force diagram of deck at 0.15 g	78
4.31c	Shear force diagram of deck at 0.25 g	78
4.31d	Shear force diagram of deck at 0.35 g	78
4.32a	Shear force diagram of column at 0.074g	79
4.32b	Shear force diagram of column at 0.074g	79
4.32c	Shear force diagram of column at 0.074g	79
4.32d	Shear force diagram of column at 0.074g	79
4.33a	Bending moment diagram of deck at 0.074g	80
4.33b	Bending moment diagram of deck at 0.15 g	80
4.33c	Bending moment diagram of deck at 0.25 g	80
4.33d	Bending moment diagram of deck at 0.35 g	80
4.34a	Bending moment diagram of column at 0.074g	81
4.34b	Bending moment diagram of column at 0.15g	81
4.34c	Bending moment diagram of column at 0.25 g	81

xvi

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

87

A Result Data

LIST OF SYMBOLS

C	-	damping
Κ	_	stiffness
М	_	mass
Ν	_	total number of contributing nodes
и	_	displacement of the mass
ù	_	velocity of the mass
ü	_	acceleration of the mass
ü _g	_	ground motion acceleration
Z	_	maximum value of the some response quantity

CHAPTER 1

INTRODUCTION

1.1 Introduction

An earthquake is produced by the sudden rupture or slip of a geological fault. Faults occur at the intersection of two segments of the earth's crust. Peninsula Malaysia lies in the Eurasian Plate and also within the Indian-Australian Plate. Geologically, small faults also exist in East Malaysia. Records have shown that we do sometimes experiences some off-set tremors originating from the Indonesian zone. Thus there is a need for some seismic checking to be incorporated in the design process so that the structures would be resistant to earthquake.

Malaysia was affected by the Indian Ocean earthquake on 26 December 2004. The worst affected areas were the northern coastal areas and outlying islands like Penang and Langkawi. The number of deaths stands at 68. Houses in fishing villages along coastal area were damaged in Penang, Kedah and Langkawi. Therefore it would be unwise to totally ignore the effects of earthquake on structures.

The Guillemard Railway Bridge was built across the Kelantan River in Kursial near Tanah Merah. Construction of the railway began in 1920 and was completed in July 1924. This bridge consists of 2 spans of 200 feet and 2 spans of 250 feet. Today, the railway bridge is used only for trains and makes up part of the Jungle Railway line. The Jungle Railway is the railway line serving the East Coast states of Kelantan and Pahang in Malaysia. Guillemard Bridge also happens to be the longest railway bridge in Malaysia. However, the design of Guillemard Bridge excluded the seismic effect, thus in this project the seismic vulnerability of the bridge will be studied.

1.2 Problem Statement

In recent years, low intensity earthquakes have been occurred in least expected places, such as Malaysia. But most of the structure designs in Malaysia do not take earthquake into consideration. Therefore, the situation where there is complete ignorance and unawareness of earthquake should be avoided.

In bridge engineering, a large amount of bridges have experienced damages at region of low to high intensity earthquake. For example, the Loma Prieta earthquake which was a major earthquake that struck the San Francisco Bay Area of California on October 17, 1989. The earthquake measured 6.9 on the Richter magnitude scale which caused one 15-meter section of the San Francisco-Oakland Bay Bridge collapsed, causing two cars to fall to the deck below, leading to the single fatality on the bridge. There was little use of nonlinear analysis in the design of bridge. In order to correctly analyze bridge performance in a major earthquake of long duration, the use of nonlinear analysis technique is important.

1.3 Objective of the Study

The objectives of the study are:

- (i) To determine the structural behaviour of Guillemard Railway Bridge under earthquake.
- (ii) To identify to what extend Guillemard Railway Bridge could survive under ground acceleration.
- (iii) To identify the critical part of the bridge under earthquake loading.

1.4 Scope of the Study

The scope of the study includes the following items:

- Study the architectural and structural drawings of Guillemard Railway Bridge.
- (ii) The Guillemard Railway Bridge is modelled using SAP 2000 computer software.
- (iii) The dynamic linear analysis using SAP 2000 is divided into free vibration analysis, time history analysis and response spectrum analysis.
- (iv) The dynamic nonlinear analysis using SAP 2000 is divided into free vibration analysis and time history analysis.

- (v) Different level of earthquake intensities: 0.074g, 0.15g (low intensity), 0.25g (moderate intensity) and 0.35g (high intensity) is applied to the bridge model respectively.
- (vi) Each level of earthquake intensity is applied in x direction, y direction and z direction respectively.
- (vii) Calculate the element capacity.
- (viii) Comparison to be made between element capacity and element loading.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter is mainly focuses on literature reviews that have been studied to acquire a better understanding of the project overall.

2.2 Basic Seismology

An earthquake is produced by the sudden rupture or slip of a geological fault. Faults occur at the intersection of two segments of the earth's crust and along the west coast of Malaysia where the boundaries of two tectonic plates, the Indo-Austrian plate and Eurasian plate, are located [1].

The sudden release of energy at the focus or hypocenter of the earthquake causes seismic waves to propagate through the earth's crust and produces vibration

on the earth's surface. The amplitude of the vibrations diminished with distance from the epicentre, the point on the earth's surface immediately above the hypocenter, and may last for a few seconds or for more than one minute.

Figure 2.1: Epicenter [1]

2.3 Seismic Waves

Two principal types of seismic waves are generated: body waves, which travel from the hypocenter directly through the earth's lithosphere, and surface waves, which travel from the epicentre along the surface of the earth. Body waves consist of the primary wave or P wave, a compressive wave, and the secondary wave or S wave, a transverse wave [1].

The motion of P wave is the same as that of a sound wave in a fluid. As it spreads out, it alternately pushes (compresses) and pulls (dilates) the rock. P waves are able to travel through both solid rock and liquid material.

The slower wave through the body of rock is called the S wave. As an S waves propagates, it shears the rocks sideways, at right angles to the direction of travel. Thus S wave can produce both vertical and horizontal motions. However, S waves cannot propagate in the liquid parts of the earth and their amplitude is significantly reduced in liquefied soil.

Another type of earthquake wave is called surface wave because of its motion is restricted to near the ground surface. Surface waves consist of the Love wave, which produces a sideways motion, and the Rayleigh wave, which produces a rotary wave-like motion.

The motion of Love wave is essentially the same as that of S waves that have no vertical displacement. It moves the ground side to side in a horizontal plane parallel to the Earth's surface, but at right angles to the direction of propagation.

The second type of surface wave is known as Rayleigh wave. The pieces of rock disturbed by a Rayleigh wave move both vertically and horizontally in a vertical plane pointed in the direction in which the waves are travelling, just like rolling ocean waves.

Body waves have a higher frequency range and attenuate more rapidly than surface waves. Hence, structures with longer natural periods, such as high-rise buildings and bridges, are most at risk some distance from the epicentre than low-rise buildings, which have a short natural period.

Figure 2.2: Types of seismic waves [1]

2.4 Measurement of Earthquake Magnitude and Intensity

The Richter magnitude scale is a logarithm-based scale which utilizes the amplitude of seismic vibrations, recorded on a standard seismograph, to determine the strength of an earthquake. Earthquakes of Richter magnitude 6, 7 and 8 are categorized respectively as moderate, major and great earthquakes [1].

Earthquake intensity is measured on the modified Mercalli index which is based on the observed effects of an earthquake at a specific site and a qualitative assessment of the damage caused and is an indication of the severity of ground shaking at that site. Modified Mercalli intensity values range from a value of I to a value of XII. Index value XII is classified as strong shaking causing damage to older masonry structures, chimneys and furniture. Index value VIII is classified as very strong shaking causing collapse of unreinforced masonry structures, towers and monuments. Because of the subjective nature of the Mercalli scale, different values of intensity may be assigned by different observers.

GRADE	ABRIGED	ESTIM.	RANGE OF
	DESCRIPTION	EPICENTRAL	ESTIM. LATERAL
		VIBRAT.	ACCELERATIONS
		VELOCITIES	
1	Almost imperceptible.	0.055 in./sec	0.001g to 0.003g
2	Feeble. Felt by a few on	0.11 in./sec	0.002g to 0.004g
	upper floors.		
3	Very slightly. Felt by	0.22 in./sec	0.0025g to 0.006g
	persons at rest. 6		
4	Slight. Felt by many	0.44 in./sec	0.005g to 0.008g
	persons indoors.		
5	Weak. Felt by nearly all.	0.89 in./sec	0.010g to 0.015g
6	Moderate. Felt by all.	1.8 in./sec	0.015g to 0.033g
	Slight damage.		
7	Strong. Considerable	3.6 in./sec	0.025g to 0.071g
	damage to poorly built		
	structures.		
8	Very strong.	7.1 in./sec	0.050g to 0.16g
	Considerable damage to		
	ordinary buildings.		
	Chimneys fall.		
9	Severe. Partial or total		0.10g to 0.20g
	destruction of many		
	buildings.		
10	Violent Destruction.		0.25g
	Most 0.001g to 0.003g		
	masonry and frame		
	structures destroyed.		
11	Catastrophic.		0.50g
12	Absolute ruin.		0.50g to 1.0g

 Table 2.1:
 Modified Mercalli Intensity Scale [1]

A specific earthquake has a number of different Mercalli intensities at different distances from the source but has only one value of the Richter magnitude [1].

2.5 Ground Motion

Earthquake ground motion is measured by a strong motion accelerograph which records the acceleration of the ground at a particular location. The characteristics of earthquake ground motion which are important in earthquake engineering applications are [2]:

- (i) Peak ground motion
- (ii) Duration of strong motion
- (iii) Frequency content

2.5.1 Peak Ground Motion

Peak ground motion influences the response of a structure. It includes the peak ground acceleration, velocity displacement, earthquake magnitude, epicentral distance and site description for typical records from a number of seismic events. Peak ground acceleration has been widely used to scale earthquake design spectra and acceleration time history.