SEISMIC EFFECT ON PRECAST CONCRETE STRUCTURE FOR BEAM TO COLUMN CONNECTION

LIEW MING HUI

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF T	DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT			
Author's full name : Date of birth : Title :		1982 CT ON PRECAST STRUCTURE FOR		
Academic Session:	BEAM TO COL	UMN CONNECTION		
l declare that this the	esis is classified as :			
RESTRICTED		tricted information as specified by the where research was done)*		
OPEN ACCES	S I agree that r access (full te	ny thesis to be published as online open ext)		
I acknowledged tha	t Universiti Teknologi	Malaysia reserves the right as follows:		
2. The Library of purpose of re	Universiti Teknologi I search only.	siti Teknologi Malaysia. Valaysia has the right to make copies for the copies of the thesis for academic exchange.		
		Certified by :		
SIGNATURE 821123-13-5086		SIGNATURE OF SUPERVISOR PROF. KARIM MIRASA		
(NEW IC NO. /F	PASSPORT NO.)	NAME OF SUPERVISOR		
Date : 28 NOV I	EMBER 2008	Date : 28 NOVEMBER 2008		

NOTES :* If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

" \pm / We declare that \pm / We have read through this project report and to \pm / our opinion this report is adequate in term of scope and quality for the purpose of awarding the degree of Master Engineering (Civil – Structure)"

Signature	:	
Supervisor	:	PROF. KARIM MIRASA
Signature	:	
CoSupervisor	:	PROF. AZLAN ADNAN
Date	:	28 NOVEMBER 2008

SEISMIC EFFECT ON PRECAST CONCRETE STRUCTURE FOR BEAM TO COLUMN CONNECTION

LIEW MING HUI

A report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > **28 NOVEMBER 2008**

"I declare that this report entitled "Seismic Effect on Precast Concrete Structure for Beam to Column Connection" is the result of my own research except the quotations and summaries that I have stated the sources clearly."

Signature	:	
Aunthor Name	:	LIEW MING HUI
Date	:	28 NOVEMBER 2008

Specially dedicated to my family and friends

ACKNOWLEDGEMENTS

First of all, I would like to thanks Prof Karim Mirasa and Prof Azlan Adnan who help me a lot in finishing this report. Especially for Prof. Azlan Adnan who has beean patient enough to fully guide me through whole year.

I would like to thanks those who support me morally to finish my report. Their precious opinion is useful for me to have an idea in completing this report.

ABSTRACT

This is an investigation of the seismic response on the precast structure due to the beam to connection behaviour. Seismic could damage the whole building if it is not properly designed, especially in high seismic region. Connection is one of the crucial elements to limit building damage. A lot of research has been done on monolithic reinforced concrete building but lack of information on the behaviour of precast connection under seismic effect for the whole structure. This research methodology mainly consists of two parts. The first part is finite element static load analysis and the second part is frame seismic load analysis. Finite element static load analysis models 4 types of connection. Three of the connection verified against the experimental result which carried out by P.L Chan (2006). A new connection is created and model. For frame analysis, 3 storey and 21 storey with three type connections stiffness frames are loaded with static load and seismic load. Three types of connection stiffness are pinned connection, new connection and fixed connection. The stiffness of the new connection is obtained from the slope of the total load versus deflection graph in the elastic range. The seismic load is Elcentro earthquake and modified with 0.15g and 0.50g load intensity. From the analysis results, new connection plate with 10mm thickness and Bolt 22 mm diameter has sufficient stiffness, strength and more importantly it has higher ductility. Meanwhile, the frame analysis results show that the new connection behaves as semi rigid connection after compare with pinned connection and fixed connection.

ABSTRAK

Laporan ini bertujuan untuk mengkaji kesan gempar bumi terhadap sambungan rasuk dengan tiang untuk precast struktur . Gempar bumi boleh menyebabkan kerosakan teruk kepada seluruh bangunan jika sambunagan rasuk dengan tiang tidak seusuai. Kajian terhadap aspek ini adalah kekurangan jika dibandingkan dengan bangunan konkrit yang bersifat monolitik. Cara kajian ini terbahagi kepada dua bahagian. Bahagian pertama ialah analisa unsur terhingga dan bahagian kedua ialah gempar bumi analisis bagi kerangka. Analisa unsur terhingga menganalisis empat sambungan model. Keputusan tiga daripada empat model ini dibandingkan dengan keputusan experiment yang pernah dikaji oleh P.L Chan (2006). Satu lagi model ialah sambungan baru yang direkabentuk. Bagi kerangka analisis, gempar bumi tersebut ialah Elcentro dengan pecutan gravity 0.15g dan 0.50g dan dikenakan kepada kerangka. Kerangka tersebut meliputi 3 dan 21 tingkat kerangka dengan tiga jenis sambungan yang berlainan. Keputusan ini daripada analisa unsur terhingga dan kerangka analisis menunjukkan bahawa sambungan baru yang mempunyai 10mm tebal plate dan 22mm diameter bolt adalah sambungan paling sesuai.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	XV

1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement and Importance of Study	1
1.3	Objectives	2
1.4	Scope of Study	2

2 LITERATURE REVIEW

Introduction	4
Precast Concrete System	5
Frame Subjected to Changes in Connection under	
Gravity and Wind Loads	7
Frame subjected to Seismic Effect	10
	Precast Concrete System Frame Subjected to Changes in Connection under Gravity and Wind Loads

2.5	Seism	ic Response Analysis	
	2.5.1	Response-Spectrum Modal Analysis	11
	2.5.2	Time-history Analysis	11
2.6	Basic	Mechanism of Joints and Connection	12
	2.6.1	Joints in Connection	15
		2.6.1.1 Compression Joint	
		2.6.1.1.1 Bearing Pad	16
		2.6.1.2 Shear Joint	
		2.6.1.2.1 Adhesion and Bonding	16
		2.6.1.2.2 Shear Friction	17
		2.6.1.3 Mechanical Joint	17
		2.6.1.4 Tension Joint	17
2.7	Conne	ection	
	2.7.1	Construction Type	18
	2.7.2	Design Type	
		2.7.2.1 Pinned-jointed Connections	19
		2.7.2.2 Moment Resistant Connections	20
2.8	Finite	Element Analysis	
	2.8.1	Nonlinear Concrete Material Modeling	22
	2.8.2	Nonlinear Steel Material Modeling	24
	2.8.3	Element Types	25
2.9	Behav	iour of Beam to Column Connection	
	2.9.1	Beam- Column Connections in Precast	
		Reinforced Concrete Construction	26
	2.9.2	Performance of Precast Concrete Beam to	
		Column Connection Subject to Cyclic Loading	28
	2.9.3	Effect of Connection Rigidity on Seismic	
		Response of Precast Concrete Frames	28
	2.9.4	Tests on Connections of Earthquake Resisting	
		Precast Reinforced Concrete Perimeter Frames	29
	2.9.5	Behaviour of Beam to Column Connection	
		in Precast Concrete Structure	29
	2.9.6	Behaviour of Beam to Column Connection	
		in Precast Concrete Structure	30

2.9.7	Behaviour of Beam to Column Connection	
	in Precast Concrete Structure	30

3 RESEARCH METHODOLOGY

3.1	Introduction	31
3.2	Research Methodology	31
3.3	Structural Model	33
3.4	Finite Element Model	37

4 **RESULTS AND ANALYSIS**

4.1	Introd	uction	41
4.2	Finite	Element Analysis of Connection for Static Load	41
4.3	Frame	Analysis for Dynamic Load	
	4.3.1	Modal Analysis and Linear Time History	
		Analysis	54

5 CONCLUSION

5.1	Introd	uction	69
5.2	Concl	usion	
	5.2.1	Finite Element Modal	69
	5.2.2	Frame Model	70
	5.2.3	Recommendation	71

6 **REFERENCES**

72

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Experimental Specimens Detail	26
3.1	Typical Corbel Type and New Connetion Model	
	Elements	39
4.1	Material Properties for Concrete Components	42
4.2	Material Properties for Steel Components	43
4.3	Peak Stress of the Concrete for Different Model F4	
	(Connection Assignment)	44
4.4	Corbel Only Model	47
4.5	Corbel + Plate and Bolt on Beam Top Model	49
4.6	Corbel + Plate and Bolt on Beam Top + Stiffener	
	Model	51
4.7	New Connection Plate 10mm thickness and Bolt	
	22 mm diameter	52
4.8	Modal Analysis for Seismic Intensity Load 0.15g	54
4.9	Modal Analysis for Seismic Intensity Load 0.50g	55

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	F1 (Deformed and Moment Distribution Shape)			
2.2	F2 (Deformed and Moment Distribution Shape)			
2.3	F3 (Deformed and Moment Distribution Shape)			
2.4	F4 (Connection Assignment)			
2.5	F4 (Deformed and Moment Distribution Shape)			
2.6	Applied Force versus Vertical Deflection			
2.7	Construction Tolerances			
2.8	Pressure Zone X			
2.9	Shear Key	14		
2.10	Mechanical Joint			
2.11	Compression Joint			
2.12	Type 1 and Type 2 Connections			
2.13	Corbel Type for Pin-jointed Connection			
2.14	Basic Principle of Moment Resistant Connection			
2.15	Welded Plate Connector			
2.16	Steel Billet Connector			
2.17	Tension Softening Behaviour of Concrete	23		
2.18	Compression Behaviour of Concrete	23		
2.19	Hardening Properties of Steel	24		
3.1	Experimental Connection	32		
3.2	Proposed New Connection	32		
3.3	Flow Chart of the Research Methodology	33		

3.4	3 Storey 3 Dimensional Frame	35	
3.5	21 Storey 3 Dimensional Frame		
3.6	Elcentro Graph	36	
3.7	Elcentro (0.15g) Graph	36	
3.8	Elcentro (0.50g) Graph		
3.9	Finite Element Model for Corbel Only Model	37	
3.10	Finite Element Model for Corbel + Plate and Bolt		
	on Beam Top Model	38	
3.11	Corbel + Plate and Bolt on Beam Top + Stiffener Model	38	
3.12	New Connection Plate 10mm thickness and		
	Bolt 22 mm diameter	39	
4.1	Von Mises Stress for Corbel Only Model	39	
4.2	Von Mises Stress for Corbel + Plate and Bolt on		
	Beam Top Model	45	
4.3	Von Mises Stress for Corbel + Plate and Bolt		
	on Beam Top + Stiffener Model	46	
4.4	Von Mises Stress for New Connection Plate		
	10mm thickness and Bolt 22 mm diameter	46	
4.5	Crack Location for Corbel Only Model	47	
4.6	Total Forces versus Deflection for Corbel Only Model		
4.7	Crack Location for Corbel + Plate and Bolt on		
	Beam Top Model	49	
4.8	Total Forces versus Deflection for Corbel + Plate and		
	Bolt on Beam Top Model	50	
4.9	Crack Location for Corbel + Plate and Bolt on		
	Beam Top + Stiffener Model	51	
4.10	Total Forces versus Deflection for Corbel + Plate and		
	Bolt on Beam Top + Stiffener Model	52	
4.11	Crack Location for New Connection Plate 10mm		
	thickness and Bolt 22 mm diameter	53	
4.12	Total Forces versus Deflection Comparison for		
	New Connection	53	
4.13	Beam Moment Comparison for Pinned Connection		
	for 3 Storey	55	

4.14	Beam Moment Comparison for New Connection	
	for 3 Storey	56
4.15	Beam Moment Comparison for Fixed Connection	
	for 3 Storey	56
4.16	Beam Shear Comparison for Pinned Connection	
	for 3 Storey	57
4.17	Beam Shear Comparison for New Connection	
	for 3 Storey	57
4.18	Beam Shear Comparison for Fixed Connection	
	for 3 Storey	57
4.19	Column Moment Comparison for Pinned Connection	
	for 3 Storey	58
4.20	Column Moment Comparison for New Connection	
	for 3 Storey	58
4.21	Column Moment Comparison for Fixed Connection	
	for 3 Storey	59
4.22	Column Shear Comparison for Pinned Connection	
	for 3 Storey	59
4.23	Column Shear Comparison for New Connection	
	for 3 Storey	60
4.24	Column Shear Comparison for Fixed Connection	
	for 3 Storey	60
4.25	Beam Moment Comparison for Pinned Connection	
	for 21 Storey	61
4.26	Beam Moment Comparison for New Connection	
	for 21 Storey	61
4.27	Beam Moment Comparison for Fixed Connection	
	for 21 Storey	61
4.28	Beam Shear Comparison for Pinned Connection	
	for 21 Storey	62
4.29	Beam Shear Comparison for New Connection	
	for 21 Storey	62

Beam Shear Comparison for Fixed Connection	
for 21 Storey	63
Column Moment Comparison for Pinned Connection	
for 21 Storey	63
Column Moment Comparison for New Connection	
for 21 Storey	64
Column Moment Comparison for Fixed Connection	
for 21 Storey	64
Column Shear Comparison for Pinned Connection	
for 21 Storey	65
Column Shear Comparison for New Connection	
for 21 Storey	65
Column Shear Comparison for Fixed Connection	
for 21 Storey	66
Deformed Mode for Modal Analysis	
(New Connection-3 Storey)	67
Deformed Mode for Modal Analysis	
(New Connection-21 Storey)	68
	for 21 Storey Column Moment Comparison for Pinned Connection for 21 Storey Column Moment Comparison for New Connection for 21 Storey Column Moment Comparison for Fixed Connection for 21 Storey Column Shear Comparison for Pinned Connection for 21 Storey Column Shear Comparison for New Connection for 21 Storey Column Shear Comparison for Fixed Connection for 21 Storey Column Shear Comparison for Fixed Connection for 21 Storey Deformed Mode for Modal Analysis (New Connection-3 Storey) Deformed Mode for Modal Analysis

LIST OF SYMBOLS

$\Delta\delta$	-	Displacement Difference
ΔF	-	Force Difference
σ_{von}	-	Von Mises Stress
σ_{y}	-	Normal Stress
γ	-	Shear Stress
f	-	Frequency
t	-	Time

CHAPTER 1

INTRODUCTION

1.1 Introduction

Seismic could damage the whole building if it is not properly designed, especially in high seismic region. Connection is one of the crucial elements to limit building damage. A lot of research has been done on monolithic reinforced concrete building but lack of information on the behaviour of precast connection under seismic effect. Therefore, this research is carried out by using computer software as a preliminary understanding of its behaviour.

1.2 Problem Statement And Importance of Study

Although several moment resistant connections are designed through research to sustain high intensity seismic, the connection fabrication is complex which will slow down the construction period. Besides, the actual behaviour of these connections is still vague. The understanding of the actual connection behaviour is very important, especially designed and constructed for high seismic region. For low seismic region such as Malaysia, seismic effect is not taken into account in design consideration which may lead to tremor felt in high rise building. The effect of Sumatran earthquake is the best prove. As a result, improvement should be made on the connection either in high or low seismic region after analyzing the connection response to the seismic.

1.3 Objectives

The objectives of the study are as follows:

- Model three connections which were carried out in laboratory for verification by using Lusas.
- (ii) Propose and model new connection by using Lusas to determine the stiffness, strength and ductility by doing parameter change of plate thickness and bolt size.
- (iii) Study the effect of new connection stiffness on 3D frame under dynamic load and compare with pinned and fixed connection frame by using SAP 2000.

1.4 Scope of Study

This study focuses on beam to column connection under static and dynamic load. For the static load, the connection is modeled by using Lusas to study the the stiffness, strength and ductility. Meanwhile, the stiffness of the connection from the finite element analysis is input in 3D frame for modal and linear time history analysis under 0.15g and 0.50g intensity (Elcentro).