Salina Binti Ramli
820610-14-5148
MA061181
2008
Master of Engineering (Civil-Structure)
Dr. Norhazilan Bin Md. Noor
 Assoc. Prof. Dr. Mohamed Abdelkader El-Gelani Ismail Prof. Ir. Dr. Mohd Warid Bin Hussin Dr. Ahmad Kueh Beng Hong

CORROSION GROWTH PREDICTION IN SEAWATER BALLAST TANK OF BULK CARRIERS USING STATISTICAL MODEL

SALINA BINTI RAMLI

A project report submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > April 2008

I declare that this project report entitled "*Corrosion Growth Prediction In Seawater Ballast Tank Of Bulk Carriers Using Statistical Model*" is the result of my own research except as cited in references. This project has not been accepted for any degree and is not concurrently submitted in candidature of any other degree

Signature : Name Salina Binti Ramli : : 02/05/08. Date

Teristimewa untuk Ibu dan bapa tersayang; Pn. Aminah Binti Pandak Soud dan En. Ramli Bin Kassim, tunang yang banyak memberi sokongan; En. Nazrul Aizad Bin Harun serta adik-adik yang dikasihi; Mohd Shahril, Saliza, Syahirah dan Syafiqa.

APPRECIATION

First of all, grateful to Allah S.W.T, after a year of struggle and hard work, with His will, this thesis is completed. Thanks to Allah for giving me the strength to complete this project and the strength to keep on living.

To my supervisor, Dr. Norhazilan Md. Noor, thanks a lot for the guidance you gave in completing this thesis. All advises and help you gave, academically or non-academically, are really helpful and will never be forgotten.

To all my friends, thanks a lot for all the helps. Not to forget my partner for this project, Kak Ros, really appreciate all those moments, having fun when the pressure of this project is too much for me. Not forgotten, a million of appreciation to Kak Mazura, Kak Eyza and Kak Shidah with all their helps in completing this project especially for improving my writting in English.

To my mom, dad and family, thank you for all the support you gave to me. Your sacrifice is too great to be measured. I will never be here, if you have never been there for me. You'll never be forgotten.

Lastly, to my beloved fiancé, Nazrul Aizad Bin Harun, all the support, spirit and inspiration from you all these years had brought me here to complete my master. Really appreciate all your patient and consent. Thanks for everything dear....

ABSTRACT

Corrosion is the major cause of deterioration in marine structures. For the past few years have seen an increase in the number of reported instances of accelerated corrosion in ship's ballast tank. This is why careful attention needs to be taken to prevent the deterioration due to corrosion of ballast tank. Therefore, corrosion growth prediction is important in failure analysis. This paper developed a statistical time dependent model for corrosion depth of seawater ballast tank in bulk carriers. The model is based on available group of statistical data for corrosion of existed bulk carriers. The proposed model is benefit for future prediction of corrosion data by eliminating the dependent factors such as environment factor, material properties and operational condition. In specific, a simple simulation procedure is implemented to predict the future distribution of corrosion depth. Based on the result in simulation stage, the result were synthesized and analyzed for validity of proposed model by comparing the actual data with predicted data. The result shows that the model is reliable and practical in predicting the distribution of corrosion depth. From the study, the proposed model seems to be more flexible comparing to the available analysis method and hopefully will facilitate the engineer in the future prediction of ship failure in marine structures.

ABSTRAK

Pengaratan merupakan faktor utama kepada masalah kemerosotan kualiti sesebuah stuktur laut. Jumlah pengaratan tangki balas kapal dilaporkan mengalami peningkatan yang drastic beberapa tahun kebelakangan ini. Ini adalah salah satu sebab mengapa perhatian perlu di titikberatkan dalam pengawalan pengaratan sesebuah tangki balas. Oleh sebab itu, ramalan pertumbuhan karat adalah penting dalam menganalisis kegagalan sesebuah struktur. Kajian ini dijalankan bagi menghasilkan sebuah model pertumbuhan karat di dalam tangki balas sesebuah kapal penumpang yang mana berkadaran dengan masa. Model ini dilaksanakan berdasarkan sekumpulan data kapal penumpang yang sedia ada. Model yang dicadangkan ini berguna dan dijangkakan dapat digunakan dalam membuat ramalan pertumbuhan karat bagi masa akan datang. Perlaksanaan model ini adalah berdasarkan faktor bilangan dan umur kapal dengan mengabaikan faktor-faktor lain seperti persekitaran, bahan dan keadaan operasi kapal. Seterusnya, sebuah prosedur penyerupaan yang mudah dijalankan ke atas model yang telah dibangunkan untuk meramal taburan pertumbuhan karat pada masa akan datang. Daripada proses penyerupaan yang dijalankan, kesahihan model yang dibangunkan dapat dibuktikan setelah keputusan yang diperolehi di sintesis dan dianalisis dengan membuat perbandingan secara grafik di antara data sebenar dengan data yang diramalkan. Hasil akhir menunjukkan model yang dicadangkan adalah sesuai dan praktikal dalam ramalan taburan kedalaman pengaratan . Melalui kajian ini, model yang dicadangkan diharap dapat memudahkan jurutera dalam ramalan kegagalan sesebuah struktur kapal pada masa akan datang.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	PROJECT STATUS APPROVAL	
	SUPERVISOR APPROVAL	
	TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	APPRECIATION	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLE	xi
	LIST OF FIGURE	xiii
	LIST OF SYMBOL	xvi
	LIST OF APPENDIX	xvii
1	INTRODUCTION	
	1.1 Corrosion of Marine Structures	1
	1.2 Problem Statement	2
	1.3 Objectives and Aim of Research	3
	1.4 Scope of Study	4
	1.5 Expected Findings and Importance of Research	4
	1.6 Conclusion	5

2 LITERATURE REVIEW

2.1	Corro	sion	7
	2.1.1	Definition	8
	2.1.2	Corrosion Mechanism	8
2.2	Corro	sion in Marine Structure	9
	2.2.1	Corrosion by sea water	10
	2.2.2	Marine Corrosion Mechanism	12
	2.2.3	Corrosion Failure	14
		2.2.3.1 Corrosion Failure Analysis	15
	2.2.4	Form of Corrosion	16
		2.2.4.1 Uniform Corrosion	17
		2.2.4.2 Localized corrosion	18
		2.2.4.3 Galvanic Corrosion	22
		2.2.4.4 Environmental Cracking	25
	2.2.5	Factor Cause Corrosion	28
	2.2.6	Metal Use in Marine Engineering	29
	2.2.7	Corrosion Prevention	30
		2.2.7.1 Painting	30
		2.2.7.2 Cathodic and Anodic Protection	31
		2.2.7.3 Metal Coating for Corrosion Protection	33
	2.2.8	Material and Design to Avoid Corrosion	33
2.3	Seawa	ater Ballast Tank	34
	2.3.1	Introduction	34
	2.3.2	Corrosion in Ballast Tank	36
	2.3.3	Coating Breakdown Mechanism in Ballast Tank	38
	2.3.4	Tank Inspection	41
2.4	Marin	e Corrosion Model	43
2.5	Litera	ture Review of Previous Research Papers	43
	2.5.1	Empirical Model	43
		2.5.1.1 Kelly, Et. All. (2007)	43
	2.5.2	Mathematical Model	45
		2.5.2.1 Paik, Et. All (2003)	45
		2.5.2.2 Paik, Kim and Lee (1997)	51
		2.5.2.3 Shengping Q, Et. All (2002)	51

3 METHODOLOGY

3.1	Introd	uction		53
3.2	Resea	rch Activ	vities	55
	3.2.1	Literatu	re Review	56
	3.2.2	Data Ar	nalysis	56
		3.2.2.1	Data Collection	56
		3.2.2.2	Analysis and Interpretation of Data	58
		3.2.2.3	Histogram Development	58
		3.2.2.4	Model Verification using Chi Square Test	65
		3.2.2.5	Statistical modeling of corrosion models	66
	3.2.3	Simulat	ion and Prediction	66
		3.2.3.1	Corrosion Depth Prediction Using Inverse	66
			Transformation Method	
		3.2.3.2	Verifying the Validity of Proposed Model	67
			Based on Simulation Results.	
	3.2.4	Analys	is of Model Using Root Mean Square Error	67
		Method	i (RMSE)	

4 ANALYSIS AND RESULT

Ζ	1.1	Introduction	68
Z	4.2	Linear Regression Model	70
Ζ	4.3	Probability Time-Dependent Model	72
Ζ	4.4	Chi-Square Test	78
Ζ	4.5	Simulation	80
		4.5.1 Inverse Transformation Method	80
Ζ	1.6	Result Analysis	81
		4.6.1 Graphical Comparison	82
Ζ	1.7	Root Mean Square Error Method (RMSE)	92

5 DISCUSSION AND RECOMMENDATION

5.1	Overview	95
5.2	Data Collection	97
5.3	Data Analysis	99

	5.4 Simulation and Prediction	103
	5.5 Recommendation	106
6	CONCLUSION	107
REFERE	ENCES	109
APPENI	DIX	112

LIST OF TABLES

TITLE

PAGE

TABLE NO.

2.1	Galvanic series of in flowing seawater	23
2.2	Gathered number of measured data set of thickness loss	48
	due to corrosion in seawater ballast tank of bulk carriers	
	(Paik and Thayambali, 2003).	
2.3	Summary of computed results for mean and the COV of	49
	Annualized corrosion rate of bulk carrier's seawater ballast	
	Tank (Paik and Thayambali, 2003)	
3.1	Gathered number of measured data set of thickness loss due	57
	to corrosion in seawater ballast tank of bulk carriers.	
4.1	Corrosion distribution data in seawater ballast tank of bulk	69
	Carriers	
4.2	Chi square test (average depth $= 0.6443$)	79
4.3	Chi square test (average depth $= 0.9883$)	79
4.4	Chi square test (average depth $= 0.7555$)	79
4.5	Comparison for group of vessel's age $18 - 18.5$ (1 st trial)	82
4.6	Comparison for group of vessel's age $18 - 18.5$ (2 nd trial)	83
4.7	Comparison for group of vessel's age $18 - 18.5$ (3 rd trial)	84
4.8	Comparison for group of vessel's age $20 - 20.5$ (1 st trial)	84
4.9	Comparison for group of vessel's age $20 - 20.5$ (2 nd trial)	85
4.10	Comparison for group of vessel's age $20 - 20.5$ (3 rd trial)	86
4.11	Comparison for group of vessel's age $21 - 21.5$ (1 st trial)	86
4.12	Comparison for group of vessel's age $21 - 21.5$ (2 nd trial)	87
4.13	Comparison for group of vessel's age $21 - 21.5$ (3 rd trial)	88

4.14	Comparison for group of vessel's age $23 - 23.5$ (1 st trial)	88
4.15	Comparison for group of vessel's age $23 - 23.5$ (2 nd trial)	89
4.16	Comparison for group of vessel's age $23 - 23.5$ (3 rd trial)	90
4.17	Comparison for group of vessel's age $25 - 25.5$ (1 st trial)	90
4.18	Comparison for group of vessel's age $25 - 25.5$ (2 nd trial)	91
4.19	Comparison for group of vessel's age $25 - 25.5$ (3 rd trial)	92
4.20	RMSE value for each class of vessel's age	93
4.21	The best simulation result based on RMSE	94
5.1	Collected data	98
5.2	Mean depth and standard deviation for each vessel's age	100

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	Organization of study	6
2.1	Schematic representation of current flow in simple	9
	Corrosion cell	
2.2	Regions where the metal will freely corrode	11
2.3	Crevice corrosion mechanism	12
2.4	Corrosion of metal in marine environment	15
2.5	Electrochemical cell	17
2.6	Uniform corrosion	18
2.7	Pitting corrosion	19
2.8	Crevice corrosion	20
2.9	Filiform corrosion on welded tank	22
2.10	"Worm-like" filiform corrosion	22
2.11	Galvanic corrosion	24
2.12	Effect of cathode-to-anode (C/A) ratio on galvanic	25
	Corrosion	
2.13	Stress corrosion cracking	26
2.14	Rusting due to stress corrosion cracking	26
2.15	Cathodic protection electrochemical technique	30
2.16	Cross section of vessel with single ballast tank at the bottom	35
2.17	Electrolyte process of corrosion	37
2.18	Deep pitting in ballast tank	38
2.19	Unprotected ballast tank	39
2.20	Protected ballast tank	39

2.21	Sketch of coating barrier degradation during the vessel's ballast tank life	41
2.22	Type of marine corrosion model	43
2.23	The corrosion depth versus the ship age from thickness	49
	measurements of seawater ballast tank structures (Paik	
	and Thayambali, 2003)	
2.24	The 95 percentile and above band for developing the severe	50
	(upper bound) corrosion wastage model (Paik and	
	Thayambali, 2003)	
2.25	Comparison of annualized corrosion rate formulations,	50
	together with the measured corrosion data for seawater	
	ballast tank (Paik and Thayambali, 2003)	
2.26	Melchers conceptual model for marine corrosion	52
3.1	Flow chart of study	55
3.2	Plot of Exponential probability density function	60
3.3	Cumulative distribution function of Exponential distribution	61
3.4	Plot of Weibull probability density function	62
3.5	Weibull cumulative distribution function	63
4.1	Linear regression analysis of mean depth and vessel's age	71
42	Linear regression analysis of standard deviation and	71
	vessel's age	
4.3	Specific histogram of ship's age 11.5-12 years	74
4.4	Specific histogram of ship's age 12.5-13 years	74
4.5	Specific histogram of ship's age 15-15.5 years	75
4.6	Specific histogram of ship's age 15.5-16 years	75
4.7	Specific histogram of ship's age 16.5-17 years	76
4.8	Histogram of all data	76
4.9	Exponential probability plot	77
4.10	Histogram of comparison for simulated and actual data	83
	for group age 18-18.5 years (1 st trial)	
4.11	Histogram of comparison for simulated and actual data	83
	for group age 18-18.5 years (2 nd trial)	
4.12	Histogram of comparison for simulated and actual data	84
	for group age 18-18.5 years (3 rd trial)	

4.13	Histogram of comparison for simulated and actual data	85
	for group age 20-20.5 years (1 st trial)	
4.14	Histogram of comparison for simulated and actual data	85
	for group age 20-20.5 years (2 nd trial)	
4.15	Histogram of comparison for simulated and actual data	86
	for group age 20-20.5 years (3 rd trial)	
4.16	Histogram of comparison for simulated and actual data	87
	for group age 21-21.5 years (1 st trial)	
4.17	Histogram of comparison for simulated and actual data	87
	for group age 21-21.5 years (2 nd trial)	
4.18	Histogram of comparison for simulated and actual data	88
	for group age 21-21.5 years (3 rd trial)	
4.19	Histogram of comparison for simulated and actual data	89
	for group age 23-23.5 years (1 st trial)	
4.20	Histogram of comparison for simulated and actual data	89
	for group age 23-23.5 years (2 nd trial)	
4.21	Histogram of comparison for simulated and actual data	90
	for group age 23-23.5 years (3 rd trial)	
4.22	Histogram of comparison for simulated and actual data	91
	for group age 25-25.5 years (1 st trial)	
4.23	Histogram of comparison for simulated and actual data	91
	for group age 25-25.5 years (2 nd trial)	
4.24	Histogram of comparison for simulated and actual data	92
	for group age 25-25.5 years (3 rd trial)	
4.25	Graph RMSE vs Vessel's Age	94

LIST OF SYMBOLS

λ	=	Exponential parameter also known as failure rate
μ	=	mean
β	=	shape parameter
δ	=	location parameter
d_{ave}	=	linear regression model of defect depth average
d_g	=	degree of freedom.
Ε	=	expected frequency
φ	=	standard normal probability
f	=	probability density function
F	=	cumulative distribution function
<i>k</i> _n	=	number of classes.
μ_x	=	mean value
Ν	=	class size
0	=	observed frequency
θ	=	scale parameter
\mathbb{R}^2	=	coefficient of determination
σ^2	=	variance
std _d	=	linear regression model of defect depth standard deviation
σ_{x}	=	standard deviation
$t_{\rm v}$	=	age of vessel
u	=	random variables generated
X_o	=	an offset, which is assumed to be known a priori (the smallest value)
Y _u	=	upper limit of selected class

LIST OF APPENDIX

APPENDIX NO	TITLE	PAGE
А	Chi-Square Statistical Table	112
В	Simulation Data Example	117
С	Graphical Comparison Between Actual	155
D	Exponential Model of Corrosion Growth Data and Simulated Data	175

CHAPTER 1

INTRODUCTION

1.1 Corrosion of Marine Structures

Corrosion is the major cause of deterioration in marine structures. The past few years have been seen an increase in number of reported instances of accelerated corrosion in ship's ballast tank (Cleland, 1994). Vessels are often made of steel and therefore these structures are too exposed to suffer various types of damage as they get older.

In many forms of corrosion, pitting or grooving is forms of corrosion major involved to marine corrosion especially for ballast tank of oil tanker and bulk carrier. This localized corrosion may have serious consequences in ship's structures. It can cause severe cracking or extend wider to produce general structure deterioration. Such failure may associate with higher cost of maintenance including lost lives in some cases. The area of ballast tank that most exposed to corrosion are wing part of ballast tank which situated between the holds and the shipsides. Ballast tank is the outer hull, which create the external shape of ships. Usually, the inner water ballast tank surface area is very large. To make sure the quality of ballast tank, it needs a careful attention. (Singh, 1990). Corrosion has to be avoided. It is due to the complex structure of it with frequent wetting and drying in highly corrosive salt water environment.

1.2 Problem Statement

Ballast tank is one of vessel's parts that highly subjected to corrosion. Maintenance of ballast tank to prevent corrosion involves very high cost, therefore only relevant types and level of maintenances should be done to avoid excessive cost.

To predict corrosion growth in ballast tank in the future, it is necessary to have a relevant estimate of the corrosion rate. An inspection to measure corrosion depths in a number of vessels' ballast tank of various ages has been made. Data gathered from the inspection will be used to develop a statistical time-dependent corrosion model. This model will provide the statistical characteristic such as mean, variance, distribution of corrosion rate as a function of time ship age, making it possible to predict the corrosion rate of ballast tank of any age.

Statistical and probability analysis have been suggested by previous researchers to achieve better understanding and predict the exact depth of corrosion growth. Even though this method can gives better interpretation of corrosion growth, wide application is still uncommon. The statistical model is the best method to improve the complex parameter. Thus, this study is motivated by several problems existed in the corrosion failure analysis as listed in the following:

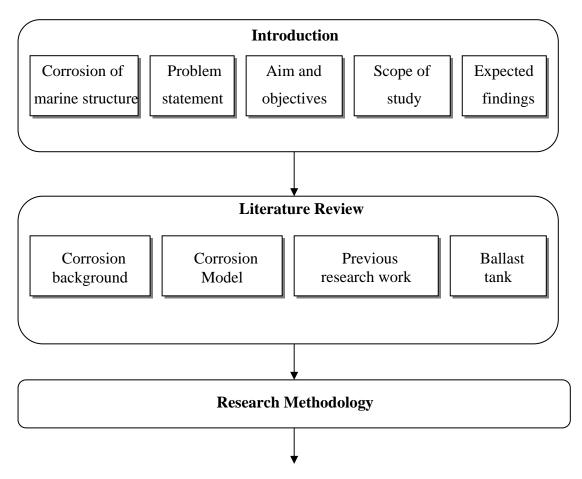
- a) Difficulty for plant engineer to understanding the available analysis method because of the complexity of corrosion empirical models and statistic technique.
- b) Errorneous data of corrosion for seawater ballast tank
- c) Lack of inspection data
- d) Corrosion models are generally developed based on experimental work at laboratory and will not gives a practical and exact simulation to the real event on site.

1.3 Objectives and Aim

The aim of this study is to develop a probability time-dependent model of corrosion depth in bulk carrier's ballast tank. To achieve the aim, the following objectives have been listed which are:

- a) To identify the distribution of real inspection data using statistical approach.
- b) To develop a model for representing the growth of corrosion depth using probability method.
- c) To predict the future corrosion distribution using Inverse Transformation Simulation procedure.
- d) To compare the actual data with the predicted data generated using the proposed model.

1.4 Scope of Study


This study will be focusing on the corrosion depth of bulk carrier's seawater ballast tank. The data used to develop a statistical model are the real data that gathered during the site inspection by ship's owner. The types of corrosion that have been considered are marine corrosion. Method that are going to be use in development of statistical model is linear/theoretical method which not consider the environment parameter. The development of statistical model in this research will enable the prediction of corrosion depths at any point of time (ship's age). Then Inverse Transformation Method which is one of element in Monte Carlo simulation will be used to assess and predict the future corrosion depth at any age of vessels' ballast tank. The prediction of future distribution of corrosion depth is based on the proposed time-dependent growth model.

1.5 Expected Finding and Importance of Research

The expected finding from this study is a time-dependent growth model of marine corrosion in vessels' sea water ballast tank. This corrosion model will be reliable in predicting the corrosion rate of seawater ballast tank of bulk carriers at any point of time. The model is specifically tailored to be simple yet practical for on site assessment of structure remaining life-time upon corrosion attack. The proposed method is a provisional tool in predicting the future growth of corrosion defect until more data can become available. Hence, enable the use of more advance and intricate model in corrosion modeling.

1.6 Conclusion

Figure 1.1 shows the work flow of the study. This study begins with an introduction to corrosion of marine structures, followed by a discussion on problem statement, aims, objectives and scope of study. The introduction is followed by Chapter 2, covering reviews of all topics related to corrosion and previous studies. Then, the research methodology is presented in Chapter 3. Chapters 4 covers the statistical and probability analysis of corrosion data from seawater ballast tank of bulk carriers. The steps in development of proposed model were discussed in detail in Chapter 4 together with the result of simulation then, followed by Chapter 5 with discussion and recommendation to improve the proposed model. The study ends in Chapter 6 conclusion to the study.

Continue to the next page

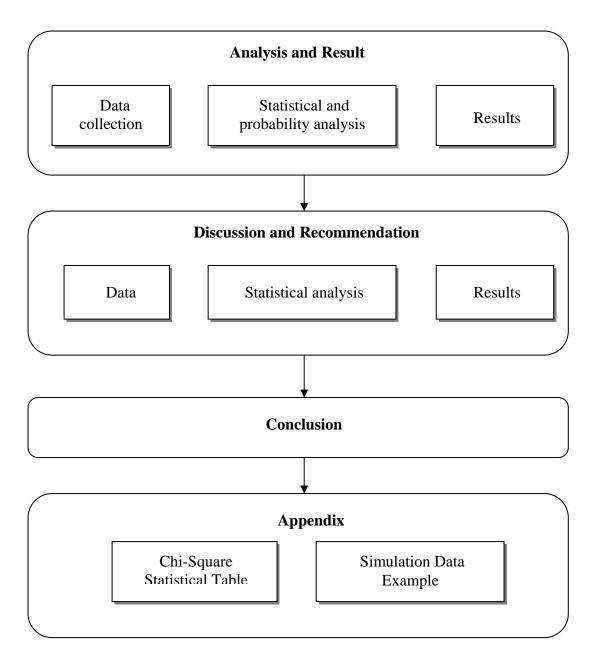


Figure 1.1: Organization of study