Author Name : Shariza Mat Aris

Contact : shariza.mat.aris@arup.com.my

The author working as structural engineer specialized in building works.

COLUMN BEHAVIOUR SUBJECT TO COMPRESSION

SHARIZA MAT ARIS

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS /	UNDERGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name :	
Date of birth :	
Title :	
Academic Session:	
I declare that this thesis is class	ified as :
CONFIDENTIAL	(Contains confidential information under the Official Secre Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
OPEN ACCESS	I agree that my thesis to be published as online open access (full text)
I acknowledged that Universiti	Teknologi Malaysia reserves the right as follows:
 The thesis is the propert The Library of Universiti 1 	y of Universiti Teknologi Malaysia. Teknologi Malaysia has the right to make copies for the purpose
 The Library has the right 	t to make copies of the thesis for academic exchange.
	Certified by :
SIGNATURE	SIGNATURE OF SUPERVISOR
(NEW IC NO. /PASSPORT	NO.) NAME OF SUPERVISOR
Date :	Date :
Date :	Date :

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

SUPERVISOR'S DECLARATION

I hereby declare that I have read this project report and in my opinion, this report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil – Structure)

Signature:Name of Supervisor: Prof. Dr. Shahrin MohammadDate: 11th June 2008

COLUMN BEHAVIOUR SUBJECT TO COMPRESSION

SHARIZA MAT ARIS

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > June 2008

I declare that this project report entitled "Column Behaviour Subject to Compression" is the results of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Shariza binti Mat Aris
Date	:	9 th June 2008

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor, Prof. Dr. Shahrin Mohammad for his guidance and help during the development of this project report.

I would like also to express my gratitude and thanks to my family for their encouragement and support. I also thanks to Arup Jurunding Sdn. Bhd. for the using of *Oasys*-GSA software.

ABSTRACT

This project studies only the static non-linear behaviour of a CHS as a column member with four (4) type of end conditions i.e pinned end, fixed end, pin fixed and free fixed with applied vertical load at top of the column. OASYS software is used for the non-linear buckling analysis of the column. Beams element models are considered in this study. Geometrical nonlinearities are modelled by introduced imperfection of L/1000 to perform the deflection. The influences of the end conditions under the vertical point loads are investigated. It can be concluded that from the analysis results, the compression capacity of the column section capacity reduced due to the slenderness. No additional reduction to the section capacity is required.

ABSTRAK

Projek ini hanya mengkaji kelakuan static bukan linear keluli bulat gerongang sebagai angota tiang dengan empat jenis keadaan hujung iaitu ; hujung cemat, hujung terikat, hujung terikat cemat dan hujung terikat bebas dengan beban tegak kenaan di hujung atas tiang. Perisian Oasys telah digunakan untuk analisis lengkokan bukan-linear bagi tiang. Model unsur rasuk adalah diambil kira dalam kajian ini. Geometri bukan-linear dimodelkan dengan mengenakan ketaksempurnaan sebanyak L/1000untuk membentuk pesongan. Pengaruh keadaan hujung disebabkan beban titik tegak adalah dikaji. Boleh disimpulkan bahawa keputusan kajian menunjukkan keupayaan mampatan kepada keupayaan keratan tiang adalah berkurangan disebabkan oleh kelangsian tiang. Pengurangan tambahan kepada keupayaan keratan adalah tidak diperlukan.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGES
	DEC	LARATION	ii
	ACK	NOWLEDGEMENT	iii
	ABS'	TRACT	iv
	ABS'	TRAK	V
	TAB	LE OF CONTENTS	vi
	LIST	F OF TABLES	ix
	LIST	FOF FIGURES	xi
	LIST	F OF SYMBOLS	XV
	LIST	FOF APPENDICES	xvii
1.	INTI	RODUCTION	1
	1.1	Background and Statement of	2
	Probl	lem	3
	1.2	Objective of the Study	3
	1.3	Scope of the Study	4
2.	LITI	ERATURE REVIEW	5
	2.1	Buckling and Deformation Behaviour	5
	2.2	Bending Behaviour	6
	2.3	Shear Behaviour	6
	2.4	Bending and Shear Behaviour	6
	2.5	Euler Buckling	8

CHA	AP7	ΓER
CHA	4P7	ΓER

3.

4.

TITLE

2.6	Desig	n Review of CHS to BS 5950-	9
	1:2000	0	
	2.6.1	Section Properties and	9
		Material	
	2.6.2	Design of Structural Member	10
МЕТ	HODO	LOGY	14
3.1	Simul	ation Study	14
3.2	Colun	nn Input Data	15
3.3	Evalua	ation of Simulation Data	16
3.4	Comp	arison of Simulation Results	16
3.5	About	t Software Used for the Study	17
	3.5.1	Analysis Option Used for this	18
		Study	
	3.5.2	Non-linear Buckling Analysis	18
	3.5.3	Modelling Implications for	19
		Non-linear Buckling	
		Analysis	
	3.5.4	Generating an Imperfection	19
		Geometry	
	3.5.5	Results for Non-linear	19
		Buckling Analysis	
3.6	Verifi	cation of Buckling Non-linear	20
	Eleme	ent Model	
3.7	Invest	igation Procedures for the	23
	Behav	viour of Column Subject to	
	Comp	pression of Buckling Non-linear	
ANA	LYSIS	AND RESULTS	32

4.1	Analysis Study		32
-----	----------------	--	----

CHAPTER

5.

6.

	I	
	Properties	
4.3	Column Input Data	34
4.4	Results for Column C1	35
4.5	Results for Column C1, C2, C3 and	45
	C4 with 3.2mm thk	
4.6	Results for Column C5	48
DISC	CUSSION	58
5.1	Ratio of Diameter to the thickness	59
	CHS (D/t) Relationship	
5.2	Slenderness Ratio Relationship	64
CON	CLUSION AND	69
REC	OMMENDATIONS FOR FUTURE	
REC WOI	OMMENDATIONS FOR FUTURE RK	
REC WOI REF	OMMENDATIONS FOR FUTURE RK ERENCES	71
REC WOI REF	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW	71 72
REC WOI REF APP	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW ΓΙΟΝ, DIMENSIONS, PROPERTIES AND	71 72
REC WOI REF APP SEC SEC	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES	71 72
REC WOI REF APP SEC SEC	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES ENDIX B : GEOMETRICAL PROPERTIES	71 72 76
REC WOI REF APP SEC SEC APP OF (OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES ENDIX B : GEOMETRICAL PROPERTIES CHS	71 72 76
REC WOI REF APP SEC SEC APP OF C APP	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES ENDIX B : GEOMETRICAL PROPERTIES CHS ENDIX C : VERIFICATION MODEL INPUT	71 72 76 77
REC WOI REF APP SEC SEC APP OF C APP FILF	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES ENDIX B : GEOMETRICAL PROPERTIES CHS ENDIX C : VERIFICATION MODEL INPUT	71 72 76 77
REC WOI REF APP SEC SEC APP OF C APP FILF	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES ENDIX B : GEOMETRICAL PROPERTIES CHS ENDIX C : VERIFICATION MODEL INPUT C ENDIX D : INPUT FOR COLUMN C1	71 72 76 77 86
REC WOI REF APP SEC SEC APP OF C APP FILF APP	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES ENDIX B : GEOMETRICAL PROPERTIES CHS ENDIX C : VERIFICATION MODEL INPUT C ENDIX D : INPUT FOR COLUMN C1 ENDIX E : INPUT FOR COLUMN C2	71 72 76 77 86 88
REC WOI REF APP SEC SEC SEC APP OF C APP FILF APP APP	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES ENDIX B : GEOMETRICAL PROPERTIES CHS ENDIX C : VERIFICATION MODEL INPUT C ENDIX D : INPUT FOR COLUMN C1 ENDIX E : INPUT FOR COLUMN C2 ENDIX F : INPUT FOR COLUMN C3	71 72 76 77 86 88 90
REC WOI REF APP SEC SEC APP OF (APP APP APP APP	OMMENDATIONS FOR FUTURE RK ERENCES ENDIX A : CIRCULAR HOLLOW FION, DIMENSIONS, PROPERTIES AND FION CAPACITIES ENDIX B : GEOMETRICAL PROPERTIES CHS ENDIX C : VERIFICATION MODEL INPUT C ENDIX C : INPUT FOR COLUMN C1 ENDIX E : INPUT FOR COLUMN C2 ENDIX F : INPUT FOR COLUMN C3 ENDIX G : INPUT FOR COLUMN C4	71 72 76 77 86 88 90 92

LIST OF TABLES

TABLE NO.	TITLE	PAGES
3.1	Summaries of Column Properties For	20
	Verification Model from [7] page B – 25 and	
	others Related Properties & Equation	
3.2	Comparison between Computer Model and	21
	Theoretical Load	
4.1	Summary for Column Properties	33
4.2	Summary for Material Properties	34
4.3	Summary of Column Input Data	34
4.4	Summary for Column End Condition	34
4.5	Summary for Column C1 – l	35
4.6	Summary for Column C1 – 2	36
4.7	Summary for Column C1 – 3	39
4.8	Summary for Column C1 – 4	42
4.9	Column C1 – GSA Results Compare to	4.4
	Compression Resistance, Pc	44
4.10	GSA Results Compare to Compression	47
	Resistance, Pc	47
4.11	Summary for Column C5 – 1	48
4.12	Summary for Column C5 – 2	51
4.13	Summary for Column C5 – 3	53
4.14	Summary for Column C5 – 4	55
4.15	GSA Results Compare to Compression	57
	Resistance, Pc	

TABLE NO.

TITLE

5.1	Pin Ended Column	59
5.2	Fixed End Column	60
5.3	Pin Fixed Column	61
5.4	Fixed Free Column	62
5.5	Column C-1, $D/t = 6.656$	64
5.6	Column C1, C2, C3 & C4 Fixed End	65
5.7	Column C D/t = 34.778	66

LIST OF FIGURES

FIGURE NO.	TITLE	PAGES
1.1	Behaviour of column under loading (from	2
	figure 8.6 of ref. [4])	
2.1	Plot Relationship between Bending and	7
	Shear from [3]	
2.2	Nominal Moment at column from Beam and	12
	Slab	
3.1	Effective Lengths for Various of End	15
	Conditions from [4]	
3.2	Typical Element Model for 2m Height	21
	Column	
3.3	Horizontal Displacement Axial Force	22
	Relationship for Four Different Column	
	Length	
3.4	Applied prescribed Load Axial Force	22
	Relationship for four Different Column	
	Length	
3.5	Step 1 – Input for Titles	24
3.6	Step 2 – Input for Analysis Specification	25
3.7	Step 3 – Input for Design Specification	25
3.8	Step 4 – Input for Nodes Properties	26
3.9	Step 5 – Input for Element Properties	26
3.10	Step 6 – Input for Section Properties	27
3.11	Step 7 – Check the Graphic for the Model	27

FIGURE NO.

TITLE

3.12	Step 8 – Option to Run the Analysis	28
3.13	Step 9 – Report file for the analysis result of	28
	axial force displacement	
3.14	Step 10 – Report file continue	29
3.15	Step 11 – Option to view the load deflection	29
	chart	
3.16	Step 12 – Plot axial force deflection chart	30
3.17	Step 13 – View analysis task	30
3.18	Step 14 – View graphic model after analysis	31
4.1	Simple Column Models for Analysis	33
4.2	Axial Load Deflection Plot for Column C1-1	36
	[Load Case 10]	
4.3	Axial Load Deflection Plot for Column C1-2	38
	[Load Case 1]	
4.4	Axial Load Deflection Plot for Column C1-2	38
	[Load Case 24]	
4.5	Axial Load Deflection Plot for Column C1-3	40
	[Load Case 16]	
4.6	Axial Load Deflection Plot for Column C1-3	41
	[Applied Load 0.5kN shows linear state]	
4.7	Axial Load Deflection Plot for Column C1-3	41
	[0.5=LC1, 1=LC2, 6.4=LC16 and 10=LC28]	
4.8	Axial Load Deflection Plot for Column C1-4	43
	[Load Case 8 in Tension]	
4.9	Axial Load Displacement for Column C1	44
4.10	Axial Load Deflection Plot for Column C2-2	45
4.11	Axial Load Deflection Plot for Column C3-2	46
4.12	Axial Load Deflection Plot for Column C4-2	46
4.13	Axial Load Displacement for Column C1-2,	47
	C2-2, C3-2 and C4-2	
4.14	Axial Load Displacement for Column C5-1	49

FIGURE NO.

TITLE

PAGES

4.15	Axial Force Capacity and Load Cases	50
	Relationship for Column C5-1	
4.16	Axial Load Displacement for Column C5-2	50
4.17	Axial Force Capacity and Load Cases	52
	Relationship for Column C5-2	
4.18	Axial Load Displacement for Column C5-3	52
4.19	Axial Force Capacity and Load Cases	53
	Relationship for Column C5-3	
4.20	Axial Load Displacement for Column C5-4	56
4.21	Axial Load Displacement for Column C5	56
5.1	Plot Relationship between Axial Force /	59
	Compression Resistance and D/t Ratio Pin	
	Ended Column	
5.2	Plot Relationship between Axial Force /	60
	Compression Resistance and D/t Ratio Fixed	
	End Column	
5.3	Plot Relationship between Axial Force /	61
	Compression Resistance and D/t Ratio Fixed	
	Pin Column	
5.4	Plot Relationship between Axial Force /	62
	Compression Resistance and D/t Ratio Fixed	
	Free Column	
5.5	Plot Relationship between Axial Force /	63
	Compression Resistance and D/t Ratio for	
	Column C1 – C4	
5.6	Plot Relationship between Axial Member	64
	Capacity GSA/Pc Slenderness Ratio for	
	Column C1	
5.7	Plot Relationship between Axial Member	65
	Capacity GSA/Pc Slenderness Ratio for	
	Column C1, C2, C3 and C4	

FIGURE NO.	TITLE	PAGES
5.8	Plot Relationship between Axial Member	66
	Capacity GSA/Pc Slenderness Ratio for	
	Column C5	
5.9	Plot Relationship between Compressive	67
	Strength and Diameter from [2] to confirmed	
	plot for Figure 5.1 to Figure 5.4	

LIST OF SYMBOLS

- A cross-sectional area
- Ae sum of effective net area
- A_{eff} effective cross-sectional area
- A_g gross cross-sectional area
- A_n total net areas
- A_v shear area
- a_e net areas
- D diameter
- F_c axial compression at critical location/compression force due to axial load
- F_t axial tension at critical location
- F_v shear force
- L_E effective length
- M_b buckling resistance moment
- M_{bs} buckling resistance moment for simple columns
- M_{cx} moment capacity about major axis
- M_{cy} moment capacity about minor axis
- M_{LT} maximum major axis moment in segment L governing M_b
- M_x nominal moment about major axis at critical location
- M_y nominal moment about minor axis at critical location
- M_{rx} major axis reduced plastic moment capacity in presence of axial load
- M_{ry} minor axis reduced plastic moment capacity in presence of axial load
- p_b bending strength
- P_c compression resistance smaller of P_{cx} and P_{cy}
- p_c compressive strength
- P_{cx} compression resistance, buckling about major axis
- P_{cy} compression resistance, buckling about minor axis

LIST OF SYMBOLS

Pt	tension capacity
$\mathbf{P}_{\mathbf{v}}$	shear capacity
p _{cs}	compressive strength with reduced slenderness
p_y	design strength of steel
r	radius of gyration
S	plastic modulus
S_{eff}	effective plastic modulus
S_{x}	plastic modulus about major axis
$S_{x.eff} \\$	effective plastic modulus about major axis
t	thickness
Ζ	elastic modulus
Z_{eff}	effective section modulus
Z_{x}	section modulus about major axis
$Z_{x.eff}$	effective section modulus about major axis
Z_y	section modulus about minor axis
m _{LT}	* factors for lateral torsional buckling

- m_x * factors for major axis flexural buckling
- my * factors for minor axis flexural buckling
- * equivalent uniform moment

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	CIRCULAR HOLLOW SECTION,	72
	DIMENSIONS, PROPERTIES AND	
	SECTION CAPACITIES	
В	GEOMETRICAL PROPERTIES OF	76
	CHS	
С	VERIFICATION MODEL INPUT FILE	77
D	INPUT FOR COLUMN C1	86
Ε	INPUT FOR COLUMN C2	88
F	INPUT FOR COLUMN C3	90
G	INPUT FOR COLUMN C4	94
Н	INPUT FOR COLUMN C5	94

CHAPTER 1

INTRODUCTION

Circular Hollow Section (CHS) are frequently used as columns and rafters or trusses member in both commercial and residential construction. The cross-sectional properties around the longitudinal axis of the CHS are uniform to distribute load. The structural capacity and integrity of the member may be degraded during fabrication, due to erection and fire protection. In practices, structural element should be design to ultimate design load. Slender column will reduce the section capacity of the CHS.

These studies only look into CHS as a column member under compression. This report presented the study of non-linear buckling analysis of a simulation using computer programme *Oasys* – GSA8.2 to study the behaviour of CHS column under compression. Varying magnitudes of axial force and fixities are tested with this programme to a various diameter and thickness of the CHS. The finding is compared with the compression resistance, P_c from equation employed by the British Standard (BS 5950-1:2000) which provide the strength prediction. The task of this study is to find the influence of the column end condition with compression capacity and also to quantify the degrading effect of the CHS in relation to the column slenderness.

Figure 1.1 showing the relationship between the short column with compression and the slender column reduced strength due to buckling. The short column failed under crushing or squashing as shown in Figure 1.1 (a). The squash load, P_y is :

 $P_y = p_y A$ Eqn. 1.1 (from page 189 of ref [4]) where A = area of cross section $p_y =$ design strength

Figure 1.1 (b) shows the column failed due to buckling and depends on the degree of the slenderness. The compression resistance P_c , is :

 $P_c = p_c A_g$ Eqn. 1.2 (from cl. 4.7.4 a) of ref [8]) where $A_g = gross$ sectional area

 p_c = compressive strength (degree of slenderness)

Figure 1.1 Behaviour of column under loading (from figure 8.6 of ref [4])

1.1 Background and Statement of the Problem

The problem presented is geometrically non-linear with linear material behaviour and displacement is symmetrical at mid length of column. Basis of the method of analysis presented is non-linear beam element formulation under static load condition. The analysis is of structures behaviour under static instability of column (under prescribe non-linear static analysis) but more basic investigation of the effect on the behaviour in element due to the slenderness. The analysis is limited to axial load under compression only with geometrical imperfection.

A column considered in this numerical analysis has a uniform cross section and the support condition are pinned end, fixed end, pin fixed and fixed free at each end and subjected to axial load compression only at the top of the column. Columns are initially straight but an initial geometric imperfection at mid column of L/1000 is given to performed non-linear analysis. The results show that the behaviour of the columns under axial load P can be significantly affected by the column slenderness.

1.2 Objective of The Study

The objective of this study is to find out the effect of the CHS with respect to capacity and compression resistance in the member. The factored which will be considered in the study are :

- The size of the CHS.
- The slenderness ratio of the CHS.
- Type of the end conditions / support conditions.
- Ratio of thickness to the diameter of CHS (D/t).
- Vertical load applied to the member.

The study are confined to the computer modelling using non-linear buckling analysis of the CHS as a column member (beam element) under compression from buckling with various diameter and thickness. This study also to review the design based on the existing Code of Practice i.e BS 5950-1:2000 of the CHS, and identifying if there is any downgrade of the section capacity base on simulation compared to the code allowed for.

1.3 Scope of The Study

This study is focusing on the CHS as a column with beam element. The scope of work including

- Review the compression resistance based on Code of Practice BS 5950-1:2000.
- Computer simulation investigation using buckling non-linear static analysis to find out the ultimate capacity of the column from axial load and horizontal deflection plot.
- Evaluation the simulation results.
- Comparing the simulation results with the Code of Practice calculated capacity.

CHAPTER 2

LITERATURE REVIEW

Structures behave static under normal type of loading i.e live load, self weight and super imposed dead load. Structures remained linear and static under condition of small deflection and occur no yielding. Columns form part of practical structure with axial stiffness. The less the stiffness of the section, the less the ultimate capacity of the column. The behaviour of pin-ended steel column is analysed for the situation when the lateral deflection can be large enough to be of the order of the cross section depth (but small compared to length) with stress remain elastic [6].

2.1 Buckling and Deformation Behaviour

The deformation behaviour is an important factor for defining the buckling behaviour and buckling loading Shanley's inelastic buckling theory. The strain level at buckling stage and the slenderness ratio were two keys factors that affected the buckling load. The classical approach of simply using certain effective modulus in Euler's formula to define the buckling load is not adequate for column models with small slenderness ratio [1].

Circular hollow sections with flattened edges, fail under compressive loading, with excessive plastic deformation near the area of flattened edges and cannot reach nominal buckling strength, i.e elastic buckling failure mode, where new failure mode is found due to lower steel quality and elements with low slenderness value [2].

2.2 Bending Behaviour

Web elements with openings subject to bending, in compact and slender, having circular, elliptical or rectangular openings located at mid depth of the section could reduced the plastic moment capacity up to 40%. For cold formed steel beam [3], determined that local buckling were influence by web opening and presence of web punch out would result in decrease the structural performance of the web.

2.3 Shear Behaviour

Shear buckling coefficients and approximate methods for computing the ultimate shear capacity proposed due to influence of holes on the shear behaviour in flat plates. Nominal shear strength determined by applying a strength reduction factor to strength calculation for a cross section of web punch outs [3].

2.4 Bending and Shear Behaviour

Behaviour of channels with web openings subject to combined bending moment and shear force find that the current AISI specification interaction equation adequately predicts the web capacity if the nominal shear and bending strength are appropriately modified to account the presence of a web opening. The design recommendation is limited to beams having geometric and material properties for the study only. Figure 2.1 – Fig. 6 from [3] indicate the AISI specification for solid web does not provide good relationship between bending and shear for beam webs with opening. Figure 2.1 – Fig. 7 from [3] presents a better correlation between bending moment and shear force when compared with the AISI design approach [3].

Figure 2.1 Plot Relationship between Bending and Shear from [3]

2.5 Euler Buckling

Element which is subject to compression must be checked against buckling with relation of [5]:

 $P/A \le \sigma_u \qquad \text{eqn. 2.1}$ where P = Factored axial compression. A = Cross Section $\sigma_u = \text{Buckling failure stress}$

Euler produced a first solution to the problem of column stability for pin ended at both ends in 1750. Euler Critical load [6] :

Pcr = $\pi^2 EI/L^2$ eqn 2.2 where E = Modulus of elasticity I = Moment of inertia L = Column Length

Euler Critical Stress [4] : $\sigma_E = \Pr / A \qquad \text{eqn } 2.3$ $= \pi^2 \text{EI} / \text{AL}^2$ $= \pi^2 \text{E} / (\text{L/r})^2$ $\sigma_E = \pi^2 \text{E} / \lambda^2 \qquad \text{eqn } 2.4$ where λ = slenderness ratio = L/r r = radius of gyration

The slenderness λ , is the only variable affecting the critical stress. At the critical load the column is in neutral equilibrium. The central deflection is not defined and may be in unlimited extend. [4]. Euler critical load does not take into account of the imperfections to be found in actual column, geometrical or structural. Due to this the actual column failure load is lesser than the Euler critical load [5].

2.6 Design Review of Circular Hollow Section to BS 5950-1:2000

This design review is to present the interaction equation for bending moment and compression currently BS 5950-1:2000 specified.

2.6.1 Section Properties Materials

General section properties for CHS are presented in Appendix B. Holes for larger opening other than for bolts should be deducted during determined gross cross-section properties. Cross-section subject to compression due to bending moment or an axial force for circular hollow sections should be classified separately for axial compression and for bending. Limiting width to thickness ratio D/t for CHS in compression due to bending are $40\epsilon^2$ for class 1 plastic, $50\epsilon^2$ class 2 compact and $140\epsilon^2$ class 3 semi-compact. For CHS in axial compression D/t are $80\epsilon^2$ for class 3 semi-compact. Effective plastic modulus for CHS, for class 3 semi-compact, should be obtained from

$$S_{eff} = Z + 1.485 \left[\left[\left[\frac{140}{D/t} \left[\frac{275}{py} \right] \right]^{0.5} - 1 \right] (S-Z) \right] eqn. 2.5 [13]$$

Calculating resistance to local buckling in the design should be made for possible effect of any shift of the centroid of the effective cross-section compared to gross cross-section. CHS with cross-section of internal element wider than 80 ϵ times thickness should check for possible effect of local buckling on serviceability when member stressed by axial compression.

Effective cross-sectional area A_{eff} and effective section modulus Z_{eff} of class 4 slender CHS of thickness t can be determined from :

$$\frac{A_{\text{eff}}}{A} = \left[\left[\frac{80}{D/t} \right] \left[\frac{275}{p_y} \right] \right]^{0.5} \quad \text{eqn. 2.6 [13]}$$

$$\frac{Z_{\text{eff}}}{Z} = \left(\frac{140}{D/t}\right) \left(\frac{275}{p_y}\right)^{0.25} \quad \text{eqn.2.7 [13]}$$

Provided that overall diameter D does not exceed 240 te².

The elastic properties of steel are:

• Modulus of elasticity E = 205 000 N/mm²

• Shear Modulus
$$G = \frac{E}{[2(1 + v)]}$$

• Poison's ratio v = 0.3

2.6.2 Design of Structural Member

Members subject to bending should meet the following conditions.

- 1. Combination of maximum moment and co-existent shear and combination of maximum shear and co-existent moment at critical points.
- 2. Deflection criteria.
- 3. Resistance to lateral-torsional buckling should be check unless member is fully restrained.
- 4. Local buckling check for slender sections.

Shear force Fv should not be greater than shear capacity P_v given by $P_v = 0.6$ p_yA_v , for CHS $A_v = 0.6A$, should be assumed to be located adjacent to the neutral axis. Peak value of shear stress distribution should not exceed 0.75 f_y for linear elastic behaviour. For cross-section with larger opening should refer to web opening.

Generally moment capacity determined from allowing for the effects of co-existing shear.