UNIVERSITI TEKNOLOGI MALAYSIA

Author's full name : _	LIEW	VUI JEN
Date of birth : _	11 MA	ARCH 1984
Title : _	ANAL	YSIS OF EXTENDABLE IBS STEEL TRUSS
-		
Academic Session: _	2007/	2008
I declare that this thesis	s is classifie	ed as :
CONFIDEN	ITIAL	(Contains confidential information under the Official Secre Act 1972)*
RESTRICTED	D	(Contains restricted information as specified by the organization where research was done)*
√ OPEN ACC	CESS	I agree that my thesis to be published as online open access (full text)
l acknowledged that L	Jniversiti Te	knologi Malaysia reserves the right as follows:
 The thesis is the The Library of Ur of research only 	property c niversiti Tek	of Universiti Teknologi Malaysia. Knologi Malaysia has the right to make copies for the purpose
3. The Library has t	the right to	make copies of the thesis for academic exchange.
		Certified by :
SIGNATUR	RE	SIGNATURE OF SUPERVISOR ASSOC. PROF. DR ABDUL
	5655	KADIR MARSONO

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I hereby declare that I have read this project report and in my opinion this project report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil-Structure)"

Signature	:	
Name of Supervisor	:	ASSOC. PROF. DR ABDUL KADIR MARSONO
Date	:	26 JUNE 2008

ANALYSIS OF EXTENDABLE IBS STEEL TRUSS

LIEW VUI JEN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2008

DECLARATION

I declare that this project report entitled "*Analysis Of Extendable IBS Steel Truss*" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	LIEW VUI JEN
Date	:	JUNE 2008

To my beloved mother, father and brothers for their never ending care and support. To all my friends, thank you for everything.

ACKNOWLEDGEMENT

I would like to take this golden opportunity to acknowledge the guidance, assistance and advice from many people that I've come in contact with throughout the process in preparing the project report. First and foremost, to my dedicated supervisor of this research, Associate Professor Dr. Abdul Kadir Marsono, thank you so much for guiding and assisting me in completing this research.

Besides, I would like to acknowledge the guidance and assistance from all of my coursemates in Universiti Teknologi Malaysia, thank you so much for guiding and assisting me.

I also want to express my gratitude to all my friends for their kind advice and support. Finally, I wish to express my sincere appreciation to my family for their love, encouragement and support throughout the whole process.

ABSTRACT

Steel truss is a very common structure in construction. Many roofs are constructed by using steel trusses due to the high strength and durability of steel relative with its weight and size. Many types of steel trusses were also found to be commonly used. In this study, some common types of steel trusses are compared against their strength and weight, or described as their effectiveness in load sustaining. The type of truss that is most cost effective is then being used as the model to check for the capability of different sections such as hollow section, angle and channels. The section properties of these members are studied and being used in the analysis to obtain the sections that is most effective for being members in an extendable steel truss. After the most suitable member for the steel truss is found, a scaled model of truss is fabricated by using timber to study the extendability of the truss. The extendable or deployable truss is aimed to fit a span from 5.49 m to 8.53 m with an incremental of 0.6 m. This span is aimed to fit the normal width of a residential Industrial Building System (IBS) house. The pitch of the steel truss is controlled so that a minimum roof pitch is maintained to allow for the rain fall. Another scaled model is fabricated to fit longer width of a normal residential house, from 8.53 m to 13.72 m with an incremental of 0.6 m each. These extendable trusses are fabricated with standardized components towards IBS. The joints of the truss are also being studied to observe the joint failure for the expendable. Finally, the deflection, weight and sizes for both of the extendable trusses are determined. The bolt to connect the truss members is also designed in compliance with BS 5950.

ABSTRAK

Kerangka kekuda besi adalah struktur yang biasa digunakan untuk mendirikan bumbung rumah disebabkan oleh kelasakannya. Banyak jenis kerangka kekuda telah digunakan untuk mendirikan bumbung. Dalam kajian ini, jenis-jenis kerangka kekuda telah dibandingkan supaya kerangka kekuda yang paling ringan dan efektif untuk pesongan. Selain itu, seksyen-seksyen untuk membina kerangka kekuda juga telah dibandingkan supaya seksyen yang paling menjimatkan dapat dicari. Selepas itu, sebuah kerangka kekuda yang berskala dibuat untuk menganalisis kebolehpanjangan kerangka kekuda ini. Kerangka kekuda ini dibuat supaya boleh memanjang dari 5.49m kepada 8.53m dengan 0.6m setiap kali memanjang. Rentang kerangka kekuda ini boleh digunakan untuk lebar rumah teres yang biasa didirikan. Kecondongan kerangka kekuda ini juga dikawal supaya kecondongan itu cukup untuk air hujan mengalir dan mengelakkan takungan air di atas bumbung rumah. Selain itu, sebuah kerangka kekuda berskala lain yang berlainan rentang juga telah dibina. Kerangka kekuda ini dibuat supaya boleh memanjang dari 8.53m kepada 13.72m dengan 0.6m setiap kali memanjang. Komponen-komponen kerangka kekuda ini dibuat dengan komponenkomponen yang seiring menuju ke arah Sistem Bangunan Industri (IBS). Di samping itu, sambungan kerangka kekuda ini juga dikaji supaya sambungan yang tegar boleh dibuat. Akhirnya, berat, saiz seksyen dan pemesongan kerangka kekuda ini dicari dengan program computer Staad-Pro. Saiz bolt untuk menyambung kerangka kekuda juga disemak dengan piawaian BS 5950.

TABLE OF CONTENTS

TITLE

CHAPTER

	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiv
	LIST OF SYMBOLS	XV
	LIST OF APPENDICES	xvii
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	2
	1.3 Objectives	3
	1.4 Scope of Study	3
	1.5 Significant of The Study	4
	1.6 Expected Findings	5
2	LITERATURE REVIEW	6
	2.1 Introduction	6
	2.2 Sustainability	6
	2.2.1 Sustainable Technology	8

PAGE

	2.2.2	Sustai	nable Design	9
	2.2.3	Sustai	nability In Construction	10
	2.2.4	Sustai	nability During Construction	11
	2.2.5	Adva	ntages Of Sustainable Construction	11
	2	.2.5.1	Energy Efficiency	11
	2	.2.5.2	Waste Reduction	12
	2	.2.5.3	Time Saving	12
	2	.2.5.4	Cost Saving	12
	2	.2.5.5	Safety	13
2.3	Roo	f		13
	2.3.1	Weath	ner Resistance	13
	2.3.2	Streng	gth And Stability	14
	2.3.3	Durab	oility	14
	2.3.4	Drain	age	14
	2.3.5	Thern	nal Insulation	14
	2.3.6	Appea	arance	15
2.4	Trus	S		16
	2.4.1	Truss	Components	16
	2.4.2	Types	of Trusses	18
2.5	Stee	l As A (Construction Material	21
	2.5.1	Steel'	s Unique Structural Nature	21
	2.5.2	Stress	And Strain	23
	2.5.3	Stabil	ity	24
	2.5.4	Defor	mation Limits And Control	24
	2.5.5	Rust		24
	2.5.6	Indust	trial Processes	25
		2.5.6.1	Hot Rolled Products	26
		2.5.6.2	2 Cold Formed Products Or Folded Plate	27
2.6	Stee	1 Truss 1	Design	30
	2.6.1	Truss	Design To British Standard (BS) 5950-2000	30
		2.6.1.1	Loading And Analysis	30
		2.6.1.2	2 Slenderness Of Members	32
		2.6.1.3	B Compression Resistance	34
		2.6.1.4	Tension Capacity	34

			2.6.1.5	Buckling Resistance	35
			2.6.1.6	Connections	36
			2.6.1.7	Shear Of Joints	37
		2.6.2	Truss D	esign To Eurocode 3 (EC3)	39
			2.6.2.1	Tension Members	39
			2.6.2.2	Compression Members	39
			2.6.2.3	Buckling Resistance	40
			2.6.2.4	Slenderness Of Members	41
3	ME	THODO	OLOGY	7	42
	3.1	Introd	uction		42
	3.2	Mode	l Genera	tion And Analysis In Staad-Pro	43
		3.2.1	Properti	es Assignation	45
		3.2.2	Analysi	s	47
	3.3	Comp	arison E	Between Various Trusses	47
	3.4	Deplo	yable T	russ Modeling	49
	3.5	Analy	sis Of E	xtendable Trusses By Staad-Pro	60
	3.6	Bolt C	Connecti	on Design	61
4	RES	SULTS .	AND D	ISCUSSIONS	62
	4.1	Introd	uction		62
	4.2	Comp	arison E	Between Various Types Of Trusses	62
	4.3	Sectio	on Comp	arison	64
	4.4	Exten	dable Tr	russ Model Analysis	65
	4.5	Conne	ection D	esign	70
5	CO	NCLUS	IONS		72
	5.1	Introd	uction		72
	5.2	Concl	usions		72
	5.3	Recon	nmenda	tions for Future Study	76
REFERI	ENCES				78
Appendic	ces A – I)			79-121

LIST OF TABLES

TABLE NO.

TITLE

PAGE

3.1	Weight of the trusses when subjected to 10kN/m of uniform load	49
4.1	Weight of the trusses when subjected to 10kN/m of uniform load	64
4.2	Comparison between angle, RHS and C-channel	65
4.3	Deflections for every span for smaller truss extend from	66
	5.49m to 8.53m	
4.4	Deflection for every span for bigger truss extend from	68
	8.53m to 13.72m	

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Framework for sustainable construction	7
2.2	Idea and contributions from all of the parties are	10
	needed for a good sustainable construction	
2.3	Advantages of sustainable construction	11
2.4	Types of roof	15
2.5	Parts of truss	17
2.6	Truss Elements	18
2.7	Common types of roof trusses	20
2.8	Stress / strain responses: 1) ordinary structural steel 2) high	22
	strength steel for rolled shapes 3) super strength steel	
2.9	Production processes of hot rolled and cold formed	25
	steel sections	
2.10	Shapes of typical hot-rolled products	26
2.11	Cross section shapes of common cold formed steel	27
	products for construction	
2.12	Sections for high strength in automobile industry	28
2.13	New shapes and geometries for cold formed products	28
2.14	Lysaght Bondek II, permanent formwork for concrete slab	29
2.15	Lysaght Trimdek : A roofing material	29
2.16	λ for continuous chords	32
2.17	λ for discontinuous struts	33
2.18	Connection Details	36
2.19	Gusset plate stress	37

3.1	Coordinates for the truss to be plotted in the Staad-Pro	44
3.2	Nodes appeared after coordinates were keyed in	44
3.3	Members are generated between nodes	45
3.4	Members properties and supports were assigned to the truss	46
3.5	Loads were assigned on the truss members	46
3.6	Results of the Staad-Pro analysis	47
3.7	Types of trusses being compared using Staad-Pro analysis	48
3.8	Original span, 5.49m	50
3.9	Extended to 6.10m	51
3.10	Extended to 6.71m	51
3.11	Extended to 7.31m	51
3.12	Extended to 7.92m	52
3.13	Extended to 8.53m	52
3.14	Original span, 8.53m	53
3.15	Extended to 9.14m	53
3.16	Extended to 9.75m	53
3.17	Extended to 10.36m	54
3.18	Extended to 10.97m	54
3.19	Extended to 11.58m	54
3.20	Extended to 12.19m	55
3.21	Extended to 12.80m	55
3.22	Extended to 13.41	55
3.23	Extended to 13.72m	56
3.24	Members marked by circle can be extended to longer span	56
3.25	Overlapped members which allow for expanding	57
3.26	Members before expanding	57
3.27	Members extended to longer length by adjusting the	58
	two parallel members	
3.28	Member with shorter length	58
3.29	Member extended to a longer length	59
3.30	Bolt connection to connect members together	59
3.31	Out of scale truss model assigned in Staad-Pro to represent	60
	the actual model	
4.1	Types of truss that being compared	63

4.2	Out of scale truss model assigned in Staad-Pro to represent	66
	the actual model	
4.3	Shear force diagram of truss for 13.72m	70
4.4	Bending moment diagram of truss for 13.72m	70
5.1	House with expendable truss on top	74
5.2	Truss expand by extend one side of it	74
5.3	Graph Truss expand by extend the whole truss	75
5.4	Different geometry which can be further analyze to develop	76
	extendable trusses	
5.5	Different geometry which can be further analyze to develop	77
	extendable trusses	

LIST OF ABBREVIATIONS

AISC	American Institute of Steel Construction Inc.
BS	British Standard
BSI	British Standard Institution
CIB	Conseil International Batiment
EC3	Eurocode 3
IBS	Industrial Building System
RHS	Rectangular Hollow Section

LIST OF SYMBOLS

A_e	-	Effective sectional Area
$A_{e\!f\!f}$	-	The area of the effective cross section
A_g	-	Gross sectional Area
A_s	-	Shear area
a_1	-	Net sectional area of the connected leg
a_2	-	Net sectional area of the unconnected leg
d	-	The nominal diameter of the bolt
e	-	End distance from edge to center of bolt
f_c	-	The compressive strength
Ι	-	The radius of gyration about the relevant axis, determined
		using the properties of the gross cross section
L	-	Node to node length perpendicular to W
L_E	-	Effective length of the strut about the appropriate axis
L	-	The buckling length, conservatively taken as equal to the
		system length L provided that both ends are held in position
		laterally
M_b	-	Lateral torsional buckling resistance
M_{cy}	-	The moment capacity about the y axis
m_x	-	Equivalent uniform moment factor at x axis
m_y	-	Equivalent uniform moment factor at y axis
$N_{b.Rd}$	-	The design buckling resistance of the member
$N_{c.Rd}$	-	The design compression resistance of the cross section
$N_{pl.Rd}$	-	The design plastic resistance of the gross section
N_{Sd}	-	Design value of the tensile force
$N_{t.Rd}$	-	Design tension resistance of the cross section

$N_{u.Rd}$	-	The design ultimate resistance of the net section at bolt holes
P_{bb}	-	The bearing capacity of the bolt
P_{bs}	-	The bearing capacity of the connection part
P_c	-	Members' compression resistance
P_s	-	Shear capacity of bolts
P_t	-	Members' tension capacity
p_b	-	Bending Strength
p_{bb}	-	The bearing strength of the bolt
p_{bs}	-	The bearing strength of the connection part
p_s	-	Shear strength of the bolt
<i>p</i> ' _c	-	Compressive strength based on a reduced design strength
λ	-	Slenderness of a compression member
r	-	The radius of gyration about the appropriate axis
S	-	Plastic modulus
t_p	-	The thickness of the connected part
W	-	Purlin Load

LIST OF APPENDICES

APPENDIX	TITLE PA	AGE
A	Warren truss calculation by Staad-Pro	79
В	Calculation of extendable truss at 13.72m (45 feet) Span	93
С	Bolt Design	108
D	Calculation of Angle Section	109

CHAPTER 1

INTRODUCTION

1.1 Introduction

A roof is the covering on the uppermost part of a building. Roof is considered as a small part of a building, but it plays a very important role. The purpose of a roof is to protect the building and its contents from the effects of weather, loading such as rain and wind, heat, for aesthetics view, for safety concerns and so on. The types of structures that require roofs range from the size of a letter box to that of a cathedral or stadium, dwellings being the most numerous.

The characteristics of a roof are dependent upon the purpose of the building that it covers. The available roofing materials and the local traditions of construction maybe governed by local or national legislation.

In most countries a roof protects primarily against rain. Depending upon the nature of the building, the roof may also protect against heat, against sunlight, against cold and against wind. If the roof is the covering for a house, then all these protective functions are called into play. Other types of structure, for example, a garden conservatory, might utilize roofing that protects against cold, wind and rain but admits light.

The weather proofing material is the topmost or outermost layer, exposed to the weather. Many different kinds of materials have been used as weather proofing material such as tile, wood, zinc, steel, concrete and fabric.

Galvanized steel frequently manufactured with wavy corrugations to resist lateral flexing and fitted with exposed fasteners. Widely used for low cost and durability. It was the most extensively used roofing material of 20th century.

Trusses form by steel sections is normally being constructed to support the galvanized steel roofing and tile. Various types of steel trusses have been invented and used such as Warren, King Post, Storage, Scissors, Fink, Fan and others.

These trusses are selected based on many criteria before being constructed and lifted onto the building. They are considered among their usage, cost, span, space and so on.

1.2 Problem Statement

Steel trusses are normally being constructed on site and lifted onto the buildings. This will normally take a lot of time and labours to cut the steel section, weld or bolt the section together and apply protection coatings.

The qualities and quantities of the trusses are not controlled well on site. Besides, many steel sections are wasted due to incorrect measurement and skills. The trusses form can only be used for a specific building as the size of the trusses is fixed. Thus, when a different size of truss is required, another size of truss has to be design and constructed to fix the requirement. This will longer the construction period of a structure and directly increases the cost for the project.

1.3 Objective

- a) Compare the various types of trusses for strength, durability and weight
- b) Deployable or extendable truss to fit an incremental span for a normal IBS house
- c) Standardized components for a truss to fit an incremental span for a normal house usage

1.4 Scope Of Study

First of all study of the shapes of the roof truss is carried out on some of the common roof trusses that found nowadays. Analysis is carried out by using computer aided programme, Staad-Pro to obtained the lightest but larger strength's shape for the roof truss.

Besides shapes, the section properties of the roof truss members are also being analyzed to find the most efficient sections to be used for roof truss. Rectangular hollow section (RHS), angle and C channels are being compared in the analysis. Only galvanized mild steel section is being considered due to the strength and durability of steel in construction. Besides strength, the flexibility of the sections in connection is also important.

The study is being carried out by analyze the steel trusses using Staad-Pro to check the strength, durability and weight of the selected trusses. Then, comparisons are made between the trusses for their weight, strength, durability and materials.

The most effective and lightest truss is being used to develop a deployable or extendable truss to fit the various span of a house. This deployable truss should be able to extend from a shorter span to a longer span with an acceptable fall degree.

The build ability of the selected truss is also taken into consideration in this study. It is important that the truss selected is easily fabricated without difficult

components. Beside, the time to build the truss is also being considered as this is also another governing factor.

An engineered scaled truss is modeled to analyze the abilities, joint and strength of the extendable or deployable truss. This truss is done by timber to ease fabrication and modifying jobs. The extendable or deployable truss is aimed to fit a span from 5.49 m to 8.53 m with a step of 0.6 m each. This span is aimed to fit the normal width of a residential Industrial Building System (IBS) house. The pitch of the steel truss is controlled so that a minimum roof pitch is maintained to allow for the rain fall.

Another scaled model is fabricated to fit longer width of a normal residential house, from 8.53 m to 13.72 m with a step of 0.6 m each. These extendable trusses are fabricated with standardized components towards IBS.

After that, the deflections, weight and sections of the trusses for every span is obtained by using Staad-Pro. Bolt connection to joint the members together is also check in compliance with BS 5950 with the maximum forces obtained from Staad-Pro analysis on the trusses.

1.5 Significant Of The Study

This study is aimed to find out the most cost effective type of truss to be used in construction field as this will save a lot of extra cost. Besides, the most effective materials to be used is also important to the construction field. The study is also aimed to develop an extendable or deployable truss to fit the various span required. This will not only benefit from the construction time, it also enable to reduce construction cost and labour needed if it is being produced at large scale.

1.6 Expected Findings

Warren truss is expected to be the most effective type of truss compared to others. This may due to lesser vertical chords in warren truss. RHS should be the most effective sections to be adopted in truss due to its geometry.

Scaled truss models which can be extended in a given range maybe developed. The truss can be extended to fit some incremental length and maintained the roof pitch to allow for rain water drainage.

Standardized section sizes and components are to be selected to be used as the members for the trusses to ease the fabrication which fulfill the Industrial Building System (IBS).

CHAPTER 2

LITERATURE REVIEWS

2.1 Introduction

There are many studies on how to produce structures with optimized materials, cost and labour but stronger, more durable and even environmental friendly. Thus, topic such as sustainable development is arose quickly in this few decades.

2.2 Sustainability

Unprecedented forces are reshaping the building construction industry, forcing professionals engaged in all phases of building construction, design, operation, financing, insurance and public policy to fundamentally rethink their roles in the building delivery process. The main impetus is the sustainable development movement, which is changing not only physical structures but also the working of the companies and organizations that populate the building environment, as well as the hearts and minds of individuals who inhabit it. (Lester, 1992)

The sustainable development movement has been evolving worldwide for almost two decades, causing significant changes in building delivery systems in a relatively short period of time. A subset of sustainable development, sustainable construction addresses the role of building environment in contributing to the overarching vision of sustainability. (Kibert, 2005)

In 1994, the Conseil International Batiment (CIB), an international construction research networking organization defined the goal of sustainable construction as ' creating and operating a healthy built environment based on resource efficiency and ecological design'. Figure 2.1 follows shows the framework for sustainable construction developed in 1994 by CIB.

Figure 2.1 : Framework for sustainable construction (Kibert, 2005)

The term high performance, green and sustainable construction are often used interchangeably, however it is the term sustainable construction that most comprehensively addresses the ecological, social and economic issues of a building in the context of its community.

Sustainability is a characteristic of a process or state that can be maintained at a certain level indefinitely. The term, in its environmental usage, refers to the potential longevity of vital human ecological support systems, such as the planet's climatic system, systems of agriculture, industry, forestry, and fisheries, and human communities in general and the various systems on which they depend in balance with the impacts of our unsustainable or sustainable design. (Kibert, 2005)

In recent years an academic and public discourse has led to this use of the word sustainability in reference to how long human ecological systems can be expected to be usefully productive. In the past, complex human societies have died out, sometimes as a result of their own growth-associated impacts on ecological support systems. The implication is that modern industrial society, which continues to grow in scale and complexity, will also collapse.

The implied preference would be for systems to be productive indefinitely, or be "sustainable." For example, "sustainable agriculture" would develop agricultural systems to last indefinitely; "sustainable development" can be a development of economic systems that last indefinitely, etc.

Besides, safety in another concern for sustainable construction as nowadays many accidents occurs at construction site due to the conventional construction method. Thus, but developing sustainable construction the number of accidents is aimed to be reduced.

Due to the drastic changes in economy of the world nowadays, many changes of purposes on buildings have been applied, for example from warehouses to factories, houses to shops, residential apartments to hotels and so on. Thus, the development of sustainable construction is trying to produce products with lesser changes of structure when the purposes of the products are being modified.

2.2.1 Sustainable Technology

Sustainable technologies are technologies which use less energy, fewer limited resources, do not deplete natural resources, do not directly or indirectly pollute the environment, and can be reused or recycled at the end of their useful life. There is a significant overlap with appropriate technology, which emphasizes the suitability of

technology to the context, in particular considering the needs of people in developing countries. However, the most appropriate technology may not be the most sustainable one; and a sustainable technology may have high cost or maintenance requirements that make it unsuitable as an "appropriate technology," as that term is commonly used.

2.2.2 Sustainable Design

Sustainable design is the art of designing physical objects and the built environment to comply with the principles of economic, social, and ecological sustainability. It ranges from the microcosm of designing small objects for everyday use, through to the macrocosm of designing buildings, cities, and the earth's physical surface. It is a growing trend within the fields of architecture, landscape architecture, urban design, urban planning, engineering, graphic design, industrial design, interior design and fashion design.

The needed aim of sustainable design is to produce places, products and services in a way that reduces use of non-renewable resources, minimizes environmental impact, and relates people with the natural environment. Sustainable design is often viewed as a necessary tool for achieving sustainability.

Thus, architects are being responsive to develop products that fulfill sustainable construction will creativity as the term sustainability is still not common among each others. Structural engineers also play a very important role in developing sustainable constructions for the structures. They have to design the structures and consider many aspects of the structures by relating them with the term sustainability for example safety, less materials and energy, environmental friendly and so on. Figure 2.2 follows shows the interaction between many sides to reach for the sustainable construction.

Figure 2.2 : Idea and contributions from all of the parties are needed for a good sustainable construction

2.2.3 Sustainability in Construction

Sustainable Construction aims to apply this principle to the construction industry by providing ways of buildings that use less virgin material and less energy, cause less pollution and less waste but still provide the benefits that construction projects have brought us throughout history.

In this case study the sustainability considered is to developed a roof truss that can suit a range of span for houses. By using this kind of truss there are many benefits than can be generated which achieve the sustainability in constructions, such as energy efficiency, wastes reduction and time saving.