UNIVERSITI TEKNOLOGI MALAYSIA

DECLAR	ATION OF THESIS
Author's full name : SOPHIA C. A	ALIH
Date of birth : <u>12 May 1980</u>)
Title : THE APPLICA	TION OF ARTIFICIAL NEURAL NETWORK IN
NONDESTRUC RATING SYST	CTIVE TESTING FOR CONCRETE BRIDGE INSPECTION
Academic Session: 2007/2008	
I declare that this thesis is classi	fied as:
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
√ RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
OPEN ACCESS	l agree that my thesis to be published as online open access (full text)
l acknowledged that Universiti 1	Teknologi Malaysia reserves the right as follows:
 The Library of Universiti Tek purpose of research only. 	of Universiti Teknologi Malaysia. Inologi Malaysia has the right to make copies for the Inomake copies of the thesis for academic exchange.
	Certified by:
SIGNATURE	SIGNATURE OF SUPERVISOR
800512-12-5620 (NEW IC NO. / PASSPORT NO	Assoc. Prof. Dr. Azlan Bin Adnan NAME OF SUPERVISOR
Date :	Date :

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

29 October 2007

Librarian Perpustakaan Sultanah Zanariah UTM, Skudai Johor

Sir,

CLASSIFICATION OF THESIS AS RESTRICTED THE APPLICATION OF ARTIFICIAL NEURAL NETWORK IN NONDESTRUCTIVE TESTING FOR CONCRETE BRIDGE INSPECTION RATING SYSTEM: SOPHIA C. ALIH

Please be informed that the above mentioned thesis entitled "THE APPLICATION OF ARTIFICIAL NEURAL NETWORK IN NONDESTRUCTIVE TESTING FOR CONCRETE BRIDGE INSPECTION RATING SYSTEM " be classified as RESTRICTED for a period of three (3) years from the date of this letter. The reasons for this classification are

- Bridge inventory data, and inspection report data used in this study are confidential and restricted by the Public Works Department of Malaysia.
- (ii) The nondestructive testing results of the bridges in this thesis are confidential.

Thank you.

Sincerely yours,

ASSOC. PROF. DR. AZLAN BIN ADNAN, FACULTY OF CIVIL ENGINEERING, UNIVERSITI TEKNOLOGI MALAYSIA, SKUDAI JOHOR. (07-5591503) "We hereby declare that we have read this thesis and in our opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Structures)"

Signature	:	
Name of Supervisor I	:	Assoc. Prof. Dr. Azlan Adnan
Date	:	
Signature	:	
Name of Supervisor II	:	Prof. Ir. Dr. Abd. Karim Mirasa
Date	:	
Signature	:	
Name of Supervisor III	:	

:

Date

BAHAGIAN A – Pengesahan Kerjasama*

BAHAGIAN B – Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar	:	Ir. Dr Mohamad Ismail
		Jabatan Kerja Raya
		Cawangan Kuala Lumpur.
Nama dan Alamat Pemeriksa Dalam	:	Prof. Madya Ir. Dr. Wahid Omar.
		Ir. Dr. Rosli Zin, Fakulti
		Kejurutaraan Awam, UTM Skudai .
Nama Penyelia Lain (jika ada)	:	Prof. Ir. Dr. Abdul Karim Mirasa
		Fakulti Kejuruteraan Awam
		UTM Skudai

Disahkan oleh Penolong Pendaftar di SPS:							
Tandatangan	:		Tarikh:				
Nama	:						

THE APPLICATION OF ARTIFICIAL NEURAL NETWORK IN NONDESTRUCTIVE TESTING FOR CONCRETE BRIDGE INSPECTION RATING SYSTEM

SOPHIA C. ALIH

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Structures)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > OCTOBER 2007

I declare that this thesis entitled "*The Application of Artificial Neural Network in Nondestructive Testing for Concrete Bridge Inspection Rating System*" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	: _	SOPHIA C. ALIH
Date	:	29 October 2007

For my beloved Ayah and Ina Abang Bik, Abang King Soti, Joe, Ora, Mona, Khaty, Su, Kikin, Omas, Tatang

ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervisors; Assoc. Prof. Dr. Azlan Bin Adnan, and Prof. Ir. Dr. Abdul Karim Bin Mirasa from the Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor for their continuous support and supervision during the years of my study. It is their brilliant ideas and expertise that led this study to its successful outcome.

Special thanks to the staff of Bridge Unit, Public Works Department (Johor State Branch and district branches include Kota Tinggi, Mersing, Pontian, Segamat, Muar, Batu Pahat, Kluang, and Johor Bahru branch) for providing me the bridge data and supporting me during my field tests. Not forgetting the staff of Structural Laboratory, Faculty of Civil Engineering (Mr. Jamaludin, Roslee, Azam and Za'ba) for their willingness to join my field tests and valuable time they have spent. Their work and dedication to this study is very much appreciated for without it the objective of this study can not be fulfilled.

My appreciation also goes to Mr. Mohd. Rosman Bin Abd. Rahman for his care, thoughtfulness, and devoted involvement in this study. His continuous support gave me the strength to complete this study especially during the hard times. Also thanks to the SEER members; Kak Ana, Suhana, Kak Jati, Rozaina, Abang Hendry, Meldi, Lami, and En. Rosaidi for being my family and friends all these years.

ABSTRACT

The aim of this study is to determine the condition of bridges through nondestructive testing and to establish correlation between the visual inspection rating and the nondestructive testing results. Despite of their potential to be applied in bridge inspection, implementation of this method in routine inspection may be limited and it is not always readily available due to the problems that might occurred with the lack of experienced inspectors to conduct the test. Therefore, an intelligent rating system which combines both nondestructive test data and visual inspection rating has been developed to predict both ratings at any given time. Backpropagation algorithm with one hidden layer is used to develop the artificial neural network (ANN) and Borland C++ is used as the programming tool. In this study, 75 concrete bridges under the supervision of Public Works Department, PWD (Malaysia) were selected for the preliminary testing which includes the Rebound Hammer (RH) test, the Ultrasonic Pulse Velocity (UPV), and the electromagnetic cover meter. The visual rating shows 0-1 rating differences when compared to the RH ratings, in which the former tend to be much higher than the RH. However, UPV ratings are higher than the visual rating with an average difference of three ratings. The visual rating yields similar indication as RH since both approaches represent only the surface condition of the bridge. The UPV test represents the bridge condition better than RH although the indirect transmission of the results can be affected by the surface condition. Due to the higher speed and the minimum cost in conducting these tests, the rebound hammer, the UPV and the cover meter have been identified as having potential to be used as preliminary tests in evaluating the bridge condition. The ANN system developed in this study able to predict the condition rating between 70% and 90% accuracy. The linear correlation coefficient between actual rating and rating predicted by the network is between 0.6 and 0.9 indicating a strong relationship between these two values. This shows that the ANN is capable of producing accurate results. This intelligent system can help the authority to forecast bridge condition at any given time. Critical bridges can be short listed and prioritized for the allocation of maintenance budget. In general, findings from this study are useful to the PWD in monitoring the structural condition of existing bridges through the NDT method aided by the intelligent system developed in this study.

ABSTRAK

Matlamat kajian ini ialah untuk menentukan keadaan jambatan melalui ujian tanpa musnah dan seterusnya mendapatkan perhubungan antara hasil ujian ini dengan perkadaran yang dibuat secara visual. Walaupun mempunyai potensi untuk diaplikasikan dalam pemeriksaan jambatan, perlaksanaan kaedah ini dalam pemeriksaan berkala agak terhad dan kurang dipraktikkan disebabkan masalah yang mungkin timbul ekoran daripada kekurangan tenaga mahir untuk menjalankan ujian ini. Maka, satu sistem pengkadaran pintar yang menggabungkan data daripada ujian tanpa musnah dan pemeriksaan visual telah dibangunkan dalam kajian ini. Sistem ini membolehkan ramalan tentang kekuatan sesuatu struktur jambatan dibuat pada bilabila masa. Algoritma perambatan belakang dengan satu lapisan tersembunyi telah digunakan untuk membangunkan sistem rangkaian saraf buatan (ANN) dengan menggunakan bahasa perisian C++. Dalam kajian ini, sebanyak 75 jambatan konkrit di bawah seliaan Jabatan Kerja Raya (JKR) Malaysia telah dipilih untuk pemeriksaan awal ujian tanpa musnah yang terdiri daripada ujian tukul pantul (RH), kelajuan denyut ultrabunyi (UPV), dan meter penutup (CM). Perkadaran visual menunjukkan perbezaan sebanyak 0-1 kadar berbanding RH, dimana perkadaran visual adalah lebih tinggi. Walau bagaimanapun, perkadaran UPV adalah lebih tinggi daripada perkadaran visual dengan perbezaan purata sebanyak tiga kadar. Perkadaran visual adalah sama dengan perkadaran RH memandangkan kedua-dua kaedah ini hanya mewakili permukaan struktur sahaja. Ujian UPV memberikan keadaan jambatan yang lebih baik daripada RH walaupun keputusan daripada penghantaran tak langsung boleh dipengaruhi oleh keadaan permukaan. Dengan kecepatan dan kos yang rendah, ujian tanpa musnah mempunyai potensi yang tinggi untuk mengkaji keadaan struktur pada peringkat awal. Sistem ANN yang dibangunkan dalam kajian ini boleh meramal kadar kondisi struktur diantara 70 dan 90 peratus ketepatan. Pekali perhubungan linear diantara kadar sebenar and kadar yang diramal oleh ANN adalah diantara 0.6 dan 0.9 dan ini menunjukkan hubungan adalah tinggi. Ini menunjukkan ANN berupaya menghasilkan keputusan yang tepat. Sistem pintar ini boleh membantu pihak berkuasa meramal kekuatan jambatan pada sesuatu masa dengan mudah. Jambatan yang kritikal boleh disenarai pendekkan dan diberi keutamaan dalam perancangan perbelanjaan. Sebagai kesimpulanya, hasil daripada kajian ini adalah amat berguna kepada JKR dalam proses penilaian keadaan struktur jambatan sedia ada melalui ujian tanpa musnah dengan bantuan sistem pintar yang telah dibangunkan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	XV
	LIST OF SYMBOLS	xxi
	LIST OF APPENDICES	xxiii

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Work	4
1.5	Methodology	5
1.6	Thesis Organization	8

CHAPTER 2 LITERATURE REVIEW

2.1	Bridge	Inspection in Malaysia	11
	2.1.1	Rating System in Bridge Inspection	13
	2.1.2	Limitations of the Rating System	15
	2.1.3	Suggested Techniques to Overcome the	
		Limitations	17
2.2	Nonde	structive Testing in Bridge Engineering	18
	2.2.1	Increasing Demands of Nondestructive Testing	19
	2.2.2	Previous Research Applying Nondestructive	
		Testing	20
	2.2.3	Integrating Nondestructive Testing Data with BMS	21
2.3	Artific	ial Neural Network	23
	2.3.1	Capabilities of Neural Network	24
	2.3.2	Overall Application of Neural Network	25
	2.3.3	Application of Neural Network in Civil	
		Engineering	26
2.4	Closin	g Remark	28

CHAPTER 3 THEORETICAL BACKGROUND

3.1	Bridge	e Inspection	29
	3.1.1	Visual Inspection	30
	3.1.2	Nondestructive Testing	31
		3.1.2.1 Rebound Hammer Test	35
		3.1.2.2 Ultrasonic Pulse Velocity	35
		3.1.2.3 Electromagnetic Cover meters	36
3.2	Artific	cial Neural Network	37
	3.2.1	Neural Network Structure	39
		3.2.1.1 Component of a Node	41
		3.2.1.2 Topology of an ANN	44

3.2.2	Operating an ANN	46
		49
5.2.5	Back propagation Network	49
	3.2.3.1 Vanilla back propagation	50
	3.2.3.2 Generalized Delta-Rule Algorithm	53

CHAPTER 4 METHODOLOGY

4.1	Plann	ing Phase	58
	4.1.1	Significance of Research	58
	4.1.2	Test Program Planning	59
	4.1.3	Literature Review	62
4.2	Site S	urvey Phase	62
	4.2.1	Site Visit	62
	4.2.2	Gathering Bridge Record	64
	4.2.3	Nondestructive Testing	64
		4.2.3.1 Rebound Hammer	67
		4.2.3.2 Ultrasonic Pulse Velocity	71
		4.2.3.3 Electromagnetic Covermeter	77
4.3	Evalu	ation Phase	80
	4.3.1	Computation of test results	80
		4.3.1.1 Rebound Hammer Test	80
		4.3.1.2 Ultrasonic Pulse Velocity Test	81
	4.3.2	Examination of Variability	83
		4.3.2.1 Graphical Method	84
		4.3.2.2 Numerical Methods	85
	4.3.3	Calibration and Application of Tests	86
4.4	Progra	amming Phase	89
	4.4.1	Analyzing Data	91
		4.4.1.1 Data Characteristics	96
		4.4.1.2 Data Classification	96
		4.4.1.3 Data Normalization	97
	4.4.2	Developing ANN Structures	97

		4.4.2.1 Determination of Input Variables	98
		4.4.2.2 Determination of Number of Neurons	100
		4.4.2.3 Setting the ANN Parameters	100
		i) Weight and Biases	100
		ii) Summation and Activation Function	101
		iii) Learning rate and Momentum	
		Coefficient	102
	4.4.3	Operating the ANN	103
		4.4.3.1 Training Process	104
		4.4.3.2 Testing Process	104
		4.4.3.3 Validation Process	105
	4.4.4	ANN System Developed in This Study	106
4.5	Concl	usion	111

CHAPTER 5 INSPECTION RESULTS AND DISCUSSIONS

5.1	Analysis of Bridge Samples		
5.2	Determination of Bridge Condition Ratings	119	
	5.2.1 Rebound Hammer Rating	121	
	5.2.2 UPV Rating	124	
5.3	Inspection Results	127	
	5.3.1 Condition Ratings for Deck Samples	127	
	5.3.2 Condition Ratings for Abutment Samples	130	
	5.3.3 Condition Ratings for Pier Samples	132	
5.4	Correlation between VI Rating and NDT Ratings	134	
	5.4.1 VI Rating and Rebound Rating	134	
	5.4.2 VI Rating and UPV Direct Rating	135	
	5.4.3 VI Rating and UPV Indirect Rating	137	
	5.4.4 Summary of the Correlation Between VI		
	and NDT Ratings	138	
5.5	Suggested Combined Ratings		
5.6	Comparison of Ratings on Defects Samples 14		

CHAPTER 6 APPLICATION OF ANN IN BRIDGE INSPECTION

6.1	ANN System Developed in This Study	151
6.2	Data Analysis	152
	6.2.1 Data Characteristics	153
	6.2.2 Data Classification	167
	6.2.3 Data Normalization	179
6.3	ANN Structure Development	181
	6.3.1 Selection of Input Variables	182
	6.3.2 Selection of Number of Hidden Neurons	188
6.4	Results and Discussion	194
	6.4.1 Training Phase	194
	6.4.2 Testing and Validation Phase	196
	6.4.2.1 Rating Prediction for Bridge Deck	197
	6.4.2.2 Rating Prediction for Abutment	203
	6.4.2.3 Rating Prediction for Pier	208
6.5	Closing Remarks	212

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

7.1	Conclusions	214
7.2	Advantages and Disadvantages of Using	
	NDT Method	216
7.3	Advantages and Disadvantages of Using	
	ANN Method	217
7.4	Limitations of Research	218
7.5	Recommendations for Future Research	218

BIBLIOGRAPHY

APPENDICES

227

LIST OF TABLES

TABLE NO.TITLE

PAGE

2.1	General Definition of JKR Rating System (Malaysia, 2004)	14
2.2	CDOT (1995) Suggested Condition State Ratings: Painted	
	Open Steel Girders (Estes and Frangopol, 2003)	15
3.1	Tests on in-situ concrete (Bungey, 1982)	33
3.2	Strength tests – damage and restriction (Bungey, 1982)	34
4.1	Strength tests – relative merits (Bungey, 1982)	61
4.2	Relative numbers of readings necessary for various	
	test methods (Bungey, 1982)	61
4.3	Types of rebound hammer (Proceq, 1972)	68
4.4	Typical coefficient of variation of tests results on an	
	individual member corresponding to good quality	
	construction (Bungey, 1982).	85
4.5	Maximum accuracies of in-situ strength prediction (Bungey, 19	982) 88
4.6	Seismic zonation	93
4.7	Classification of system type	94
4.8	Classification of bridge deck	95
4.9	Classification of abutment	95
4.10	Classification of piers	95
4.11	Binary code used to represent output (UPV rating)	99
5.1	Classification of deck, abutment, and pier type	117
5.2	Rough guideline to determine rebound rating	122

5.3	Summary form used to determine the overall rebound hammer	Summary form used to determine the overall rebound hammer	
	rating	123	
5.4	Rough guideline to determine UPV rating	125	
5.5	Sample of summary form used to determine the overall		
	UPV rating	126	
6.1	Input and output parameters used in each system	152	
6.2	Linear correlation coefficient during testing and validation		
	phase for different input parameters	185	
6.3	Linear correlation coefficient during testing and validation		
	phase for different number of hidden neurons	190	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE	2

1.1	Research methodology	7
2.1	Different Levels of JKR Bridge Maintenance Procedure	
	(Malaysia 2004)	13
3.1	Component of neurons and synapse in human brain	
	(Simpson, 1990)	38
3.2	An artificial neuron model (Simpson, 1990)	39
3.3	A simple artificial neuron (Simpson, 1990)	39
3.4	An ANN with one hidden layer (Timothy, 1993)	40
3.5	The anatomy of the j^{th} processing element (PE)	41
3.6	Sigmoid activation function	43
3.7	Connection options in an ANN (Timothy, 1993)	45
3.8	Feedforward and feedback connections (Timothy, 1993)	45
3.9	Backpropagation learning (Simpson, 1990)	49
3.10	A multilayer perceptron with one output node (Simpson, 1990)	51
4.1	Steps in conducting research	56
4.2	Methodology applied in this study	57
4.3	Respondents involved in the survey	58
4.4	Years of experience of respondents involved	58
4.5	Results from the questionnaire	59
4.6	Test selection procedure (Bungey, 1982)	60
4.7	Sample of easily accessible bridge (continuous span)	63

4.8	Sample of easily accessible bridge (simply supported)	63
4.9	Sample of inaccessible bridge deck due to the height	64
4.10	Location and general data for a selected bridge	66
4.11	Sketch of a selected bridge	67
4.12	Rebound hammer type N used	69
4.13	Readings on each location sample	69
4.14	Form used to record Rebound reading	70
4.15	Rebound hammer test conducted on selected abutment	71
4.16	PUNDIT 6 used for UPV test	72
4.17	Differences between UPV measurement through	
	homogenous concrete and voids	73
4.18	Methods of propagating and receiving ultrasonic pulses	
	(BS 1881: Part 203: 1986 Cl. 6.1)	74
4.19	Grease applied as a couplant between transducers	75
4.20	Transducers arrangement for indirect transmission	76
4.21	Form used to record data from UPV test	77
4.22	UPV test conducted on selected beam	77
4.23	Covermeter used in this study	78
4.24	Determining the location of reinforcement bar	79
4.25	Form used to record covermeter readings	79
4.26	Averaged value of rebound number in one test location	81
4.27	Samples of UPV test on beam (direct and indirect transmission)	82
4.28	Readings recorded from the UPV test	82
4.29	Graph plotted to determine mean pulse velocity from	
	indirect transmission	83
4.30	Typical histogram plots of in-situ test results: A) Uniform supply,	
	B) Poor construction, C) Two sources (Bungey, 1982)	85
4.31	Coefficient of variation of test results related to concrete	
	strength (Bungey, 1982)	86
4.32	Stages involved in the programming phase	90
4.33	Macrozonation map at 2% PE in 50 years on rock site conditions	
	for the Peninsular Malaysia (TR=2500year), Adnan et. al. (2006).	94
4.34	Structure used in the initial part of developing the neural	
	network for NDT rating prediction	98

4.35	Coding to assign random weight to the network structure	101
4.36	Coding to assign sigmoid function to the network structure	102
4.37	Coding to assign learning rate and momentum coefficient	
	to the network structure	103
4.38	Phases involved in the ANN program	106
4.39	Snap shot interface of phase 1: structure determination	
	and data analysis	108
4.40	Snap shot interface of phase 2: setting up maximum iteration	
	and the training process	108
4.41	Snap shot interface of phase 2: completed training phase and	
	results obtained (mean square error)	109
4.42	Snap shot interface of phase 3: testing process and results	
	obtained (linear correlation coefficient, percentage of accuracy,	
	and comparison graph)	110
4.43	Snap shot interface of phase 4: validation process and results	
	obtained (linear correlation coefficient, percentage of accuracy,	
	and comparison graph)	111
5.1	Seismic zone and total numbers of bridge samples in each	
	district	115
5.2	Distribution of bridge age	115
5.3	Width and length measurement of bridge samples	116
5.4	System and element type of bridge samples	118
5.5	Test location on a selected element of a bridge sample	120
5.6	Sample of test location on a selected beam, B1	121
5.7	Rebound hammer test results for B1a	121
5.8	Plotted graph to determine overall RH rating based on	
	concrete strength	123
5.9	UPV test results for B1a	124
5.10	Plotted graph to determine overall UPV rating based on	
	pulse velocity	126
5.11	Condition ratings for bridge deck: a) VI rating, b) RH rating,	
	c) UPV direct rating, d) UPV indirect rating	129
5.12	Condition ratings for abutment: a) VI rating, b) RH rating,	
	c) UPV indirect rating	131

5.13	Condition ratings for pier: a) VI rating, b) RH rating,	
	c) UPV direct rating, d) UPV indirect rating	133
5.14	Comparison between visual inspection and rebound hammer	
	rating: a) deck, b) abutment, c) pier	136
5.15	Comparison between visual inspection and UPV (direct)	
	rating: a) deck, b) pier	137
5.16	Comparison between visual inspection and rebound hammer	
	rating: a) deck, b) abutment, c) pier	140
5.17	Differences between VI and NDT ratings: a) Rebound hammer,	
	b) UPV direct, c) UPV indirect	141
5.18	Combined rating for bridge elements: a) deck, b) abutment,	
	c) pier	143
5.19	Differences between combined ratings and VI	144
5.20	Differences between combined ratings and NDT ratings:	
	a) Rebound hammer, b) UPV direct, c) UPV indirect	145
5.21	Sample of cracks on pier and the condition ratings	146
5.22	Sample of cracks on end beam and the condition ratings	147
5.23	Sample of corrosion of reinforcement and concrete cracks on	
	beam, and the condition ratings	147
5.24	Sample of cracks pattern on beam and the condition ratings	148
5.25	Sample of spalling on abutment and the condition ratings	149
6.1	Distribution of seismic zonation on bridge site	153
6.2	Distribution of bridge age	154
6.3	Distribution of number of bridge span	155
6.4	Distribution of overall bridge width	156
6.5	Distribution of overall bridge length	157
6.6	Distribution of system type	158
6.7	Distribution of deck type class	159
6.8	Distribution of abutment type class	160
6.9	Distribution of pier type class	161
6.10	Distribution of visual inspection rating	162
6.11	Distribution of NDT rating for rebound hammer test	163
6.12	Distribution of NDT rating for UPV direct transmission test	164
6.13	Distribution of NDT rating for UPV indirect transmission	
	-	

	test	165
6.14	Correlation coefficient between input variables and outputs	166
6.15	Distribution of training and validation data for seismic	
	zonation	167
6.16	Distribution of training and validation data for bridge age	168
6.17	Distribution of training and validation data for number of	
	bridge span	169
6.18	Distribution of training and validation data for overall	
	bridge width	170
6.19	Distribution of training and validation data for overall	
	bridge length	171
6.20	Distribution of training and validation data for system type	172
6.21	Distribution of training and validation data for deck type	172
6.22	Distribution of training and validation data for abutment	
	type	173
6.23	Distribution of training and validation data for pier type	174
6.24	Distribution of training and validation data for visual	
	inspection rating: a) bridge deck, b) abutment, c) pier	175
6.25	Distribution of training and validation data for NDT rating:	
	rebound hammer test a) bridge deck, b) abutment, c) pier	176
6.26	Distribution of training and validation data for NDT rating:	
	UPV direct transmission test a) bridge deck, b) pier	177
6.27	Distribution of training and validation data for NDT rating: UPV	
	indirect transmission a) bridge deck, b) abutment, c) pier	178
6.28	C++ coding for the normalization and de-normalization	
	process	180
6.29	Interface used to normalize input and output data	181
6.30	Neural network model initially used in this study to determine	
	NDT rating	182
6.31	Mean square error for different input parameters	184
6.32	Plotted linear correlation coefficient during testing phase	
	for different input parameters	186
6.33	Plotted linear correlation coefficient during validation phase	
	for different input parameters	187

6.34	Plotted mean square error for different number of hidden	
	neurons	189
6.35	Linear correlation coefficient for different number of hidden	
	neurons: a) testing phase, b) validation phase	192
6.36	Plotted mean square error (during training phase) for each	
	rating prediction	196
6.37	Plotted actual rating and predicted rating by ANN during testing	
	phase for deck ratings: a) VI, b) RH, c) UPV Direct,	
	d) UPV Indirect	199
6.38	Plotted actual rating and predicted rating by ANN during	
	validation phase for deck ratings: a) VI, b) RH, c) UPV Direct,	
	d) UPV Indirect	201
6.39	ANN structure used in combined rating prediction for deck.	202
6.40	Plotted actual rating and predicted rating by ANN for	
	combined deck rating: a) testing phase, b) validation phase	203
6.41	Plotted actual rating and predicted rating by ANN during testing	
	phase for abutment ratings: a) VI, b) RH, c) UPV Direct,	
	D) UPV Indirect	205
6.42	Plotted actual rating and predicted rating by ANN during	
	validation phase for abutment ratings: a) VI, b) RH,	
	c) UPV Direct, d) UPV Indirect	206
6.43	Plotted actual rating and predicted rating by ANN for	
	combined abutment rating: a) testing phase, b) validation	
	phase	207
6.44	Plotted actual rating and predicted rating by ANN during	
	testing phase for pier ratings: a) VI, b) RH, c) UPV Direct,	
	d) UPV Indirect	209
6.45	Plotted actual rating and predicted rating by ANN during	
	validation phase for pier ratings: a) VI, b) RH, c) UPV Direct,	
	d) UPV Indirect	210
6.46	Plotted actual rating and predicted rating by ANN for	
	combined pier rating: a) testing phase, b) validation phase	211

LIST OF SYMBOLS

ANN	-	Artificial neural network
C_n	-	Calculated value
СМ	-	Cover meter
d_n	-	Desired output
D	-	Actual value
Е	-	Total squared error
Н	-	Hidden layer
Ι	-	Normalized value
I _{ik}	-	Input of the k th processing element from the i th processing
		element
L	-	Path length between two transducers
MSE	-	Mean square error
NDT	-	Nondestructive testing
0	-	Output
PE	-	Probability of exceedance
PGA	-	Peak ground acceleration
PWD	-	Public Works Department
r	-	Linear correlation coefficient
R	-	Rebound number
R _{c,s}	-	Estimated cube strength
RH	-	Rebound hammer
RI	-	Relativity index
S _c	-	Crushing strength

t	-	Time taken by pulse to travel between two transducers
T_j	-	Internal threshold for j th processing element
TR	-	Return period
UPV (D)	-	Ultrasonic pulse velocity for direct transmission
UPV (In)	-	Ultrasonic pulse velocity for indirect transmission
UPV	-	Ultrasonic pulse velocity
V, W	-	Connection weight
VI	-	Visual inspection
x	-	Nondestructive parameters
V	-	Pulse velocity
η	-	Learning rate
α	-	Momentum coefficient

LIST OF APPENDICES

APPENDIX TITLE

4A	List of selected bridges for NDT
4B	Sample of bridge inventory report used by the PWD
4C	Sample of visual inspection report form
4D	Road maps of Johor districts
4E	Sample of completed NDT forms
5A	Cube compressive strength as a function of the
	Rebound Number R (Proceq, 1972)
5B	Example of a summary of NDT results for each
	district (Sample of Kota Tinggi)
6A	List of data used in artificial neural network; training,
	testing, and validation data
6B	Artificial neural network system flowchart

CHAPTER 1

INTRODUCTION

This chapter will cover the overall introduction to this thesis. The importance of bridge inspection will be reviewed in general followed by current limitations and problems faced by the existing practice. The advantages of nondestructive testing method in overcoming the limitations and the potential of artificial neural network to be implemented in bridge inspection are then reviewed. These will lead to the problem statement and significance of conducting this study. The objectives and scope of work are then outlined. Next, the methodology used in this study will be discussed in general. Finally, the thesis organization will be reviewed. This covers every chapter in the thesis and their contents.

1.1 Background

Assessing the condition of a structure is necessary to determine its safety and reliability. Ideally, structural health monitoring should be similar to medical health monitoring of the body. In medical health monitoring, the life signs such as pulse and blood pressure give an overall indication of the overall health of the body. This is analogous to structure health monitoring, in which damage to the structure can be

identified by measuring changes in the global properties of the structure. Once the body signs show an anomaly, we do a medical check-up to determine the cause of the anomaly. Analogously in structural health monitoring, nondestructive evaluation can be used to determine the nature of the damage.

Concrete bridges are exposed to numerous environmental loads and traffic loads which increase from time to time. These can cause a reduction in overall strength and lead to eventual failure of the bridge. Periodic bridge inspections are therefore necessary to assess the extension, implications, and current state of the deterioration process. Inspections not only help to prevent failure but also deliver information necessary for effective administration of the bridge network. Thus, the authority can further define priorities and establish programs to apply available resources to the most critical bridges.

Currently bridges are evaluated through visual observation during the annual inspection or detail inspection using nondestructive or semi-destructive testing if the bridges are reported to have defects (Malaysia, 2004). Visual inspections are commonly used nowadays. When bridge evaluation is conducted using this method, rating will be assigned to the bridge components by a responsible inspector. The major problem with visual inspection is the inherent variability that naturally occurs when subjective observations are converted to a numerical rating. Bridge evaluation based on this method may vary according to personal judgment. Thus, large uncertainties exist in the interpretation of inspection data.

Nondestructive evaluations are one of the techniques suggested by researchers to overcome the limitations faced by the existing rating system. This method has gained interests among researchers due to its ability in determining damages inside the structure that are not visible. Previous research show a good potential of nondestructive testing to be used in evaluating structural condition of existing structure. Thus several trials were carried out to correlate data from nondestructive testing with visual inspection in order to enhance the existing evaluation process. Despite of all the advantages of using the nondestructive testing, this method is not always readily available and there may be problems due to the lack of experienced inspectors to conduct the test. Hence, the implementation of this method in routine inspection may be limited. The strong capability of artificial neural networks in predicting fuzzy data and the successful application of this approach in various fields sparks the idea of implementing ANN to predict bridge condition based on nondestructive testing data and visual inspection. In other words, nondestructive tests may not be necessarily conducted in each routine inspection; previous nondestructive testing results will be used to predict the condition rating of a bridge. It is hoped that this system will assist the current inspection process and thus lead to a more detail evaluation.

1.2 Problem Statement

Existing practice in evaluating bridge conditions through visual inspection has been identified to have few limitations. Despite of their role as the first step of any condition assessment procedure, this type of evaluation is subjected to large uncertainties and depends primarily on a personal judgment of the responsible inspector. Ratings assigned to the bridge component are subjective and may vary according to the visual observation. Due to these limitations, numbers of research have been conducted to improve assessment made using visual inspection.

In recent years, researchers and industrial practitioners has turn to nondestructive testing (NDT) method to evaluate structures due to the ability of this method in determining non-visible defects inside the structure that is not possible to be evaluated through visual inspection. Therefore, the NDT method has been chosen in this research to support evaluation made in the existing practice. However, despite of their advantages, this method is not always readily available and there may be problems due to the lack of experienced inspectors to conduct the test. Hence, the implementation of this method in routine inspection may be limited. If the NDT results can be predicted, the bridge condition can still be assessed without even conducting the test during inspection. The strong capability of artificial neural networks (ANN) in predicting fuzzy data and the successful application of this approach in various fields gives the idea of implementing ANN to predict bridge condition based on previous inspection data. If this approach is successful, there will be less works that need to be done during inspection and yet the evaluation is still thorough. This will benefit more people that are involved in bridge inspection especially the bridge authority. This system can help the authority to forecast bridge condition at any given time. Critical bridges can be short listed and prioritized for the allocation of maintenance budget.

1.3 Objectives

This study is conducted to comply with the following objectives:

- i) To produce detail evaluation on selected bridges using nondestructive testing (NDT) method
- To determine the correlation between NDT results and visual inspection (VI) ratings
- iii) To develop Artificial Neural Network (ANN) algorithm for the prediction of NDT results and VI ratings
- To determine the correlation between NDT results and VI ratings from field test (manual process) and ANN

1.4 Scope of Work

This study will cover two main aspects; conducting bridge evaluation through NDT and programming the ANN to predict the ratings. Scopes of works for this study are listed below:

- Designing new forms to be used for NDT during bridge evaluation. Four new forms are prepared for general information and sketches, rebound hammer test, ultrasonic pulse velocity (UPV) test, and cover meter.
- Conducting NDT on selected bridges. Public Works Department, PWD bridges along the Federal Roads (Johor State) are selected. Inspection are limited to concrete bridges. Three NDT methods are applied including the rebound hammer test, UPV test, and electromagnetic cover meter
- Analyzing inventory data and visual inspection report for the selected bridges. These data will be collected from PWD in 8 districts in Johor state. The inspection report for the year 2005 will be used for analysis
- iv) Designing the best ANN topology to predict VI ratings and concrete strength through NDT results. Backpropagation network with one hidden layer will be used to train the network. Borland C++ will be used as the programming tool.

1.5 Methodology

This study can be represented in five phases as shown in Figure 1.1; planning phase, site survey phase, evaluation phase, programming phase, and finally the conclusion. Each phase applied different types of methodologies. In the early stage of this study; planning phase, preliminary surveys are conducted to identify the significant of doing this research in civil engineering area particularly in bridge engineering. Literature studies are carried out in various fields especially in bridge inspection, NDT and ANN.

After completing the planning phase and all the standard procedures, site survey starts to take place. This phase begins with site visits to every district in Johor state including Johor Bahru, Pontian, Kluang, Batu Pahat, Muar, Kota Tinggi, Mersing, and Segamat to select the bridges to be inspected. For this purpose, all bridges in the districts are visited with the help of the PWD workers to gather information on the bridge structures and their locations. Inventory data and visual inspection report for the selected bridges are then taken from the PWD office. These information are analyzed prior to the inspection itself. Next, the NDT are then conducted on the bridge structures. These include the rebound hammer test, UPV test, and electromagnetic cover meter.

In the evaluation phase, results from the site survey; NDT, visual report, and inventory data are analyzed to evaluate the bridge condition. The overall concrete strength of the bridge structure is assessed and the correlation between NDT results and visual ratings are then determined. Eight reports are prepared for each district.

After all data has been analyzed, programming of ANN is commenced. The ANN system used in this study is self developed and programmed using Borland C++ language. Even though there are existing software that enable user to build neural network model without programming (such as Neuroshell 2), developing own program is more preferable in this study. This is because customized program can be designed based on our requirement and changes in the network's parameters can be made according to our analysis, unlike the existing software where certain parameters are fixed. The development of the ANN model begins with selection of variables, determination of network structure, training process, and finally validation process. This ANN model is used to predict results from NDT and visual ratings using previous data.

Finally, the results and findings from this study will be concluded. The overall results for bridge inspection using NDT method and their correlation with visual ratings are discussed to determine the rationale of applying NDT as a supporting tool in the annual bridge inspection. The accuracy of results predicted by ANN is discussed to evaluate their performance and recommend any improvement that can be conducted in the future to enhance this study.

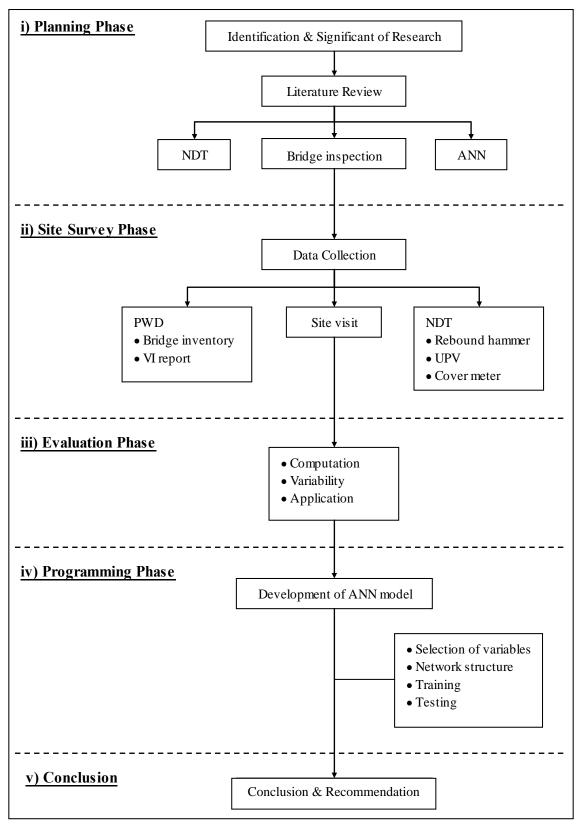


Figure 1.1: Research methodology

1.6 Thesis Flow

This thesis is organized into seven chapters as listed below:

- Chapter 1: Introduction
- Chapter 2: Literature Review
- Chapter 3: Theoretical Background
- Chapter 4: Methodology of Research
- Chapter 5: Inspection Results and Discussions
- Chapter 6: The Application of Artificial Neural Network in Rating Prediction
- Chapter 7: Conclusions

Chapter 2 will cover the literature review of each topic in this study. Existing practice in bridge inspection for Malaysia and other countries will be reviewed. The procedures involved and problems occurred will be discussed in brief. The advantages of NDT will be discussed and some applications of NDT in bridge area will be reviewed. This will lead to the discussion of integrating NDT with Bridge Management System. Next, brief background of ANN and its capabilities are outlined. Some examples of their applications in civil works and bridge engineering will be discussed.

Chapter 3 will discuss more on the theoretical background. This chapter will be divided into two main parts; theoretical background of NDT and ANN. Three types of NDT will be covered; rebound hammer, UPV, and electromagnetic cover meter. In the second part, every component in the neural network structure is discussed and the procedure involved in developing and operating a neural network will be reviewed. A complete procedure of backpropagation network is given in this chapter.

In Chapter 4, the methodology applied in this research will be discussed in detail. As in Chapter 3, this chapter will be divided into two main parts; nondestructive testing and methodology of ANN. The method of inspection is

discussed thoroughly. This will cover the step-by-step procedures, site testing, pictures, and method in analyzing data. As for the ANN, the discussion will be focused on every stage of the ANN development. It starts from data analysis, followed by the development of ANN structure, and the process involved which include training process, testing, and finally validation phase. The ANN system developed in this study is reviewed at the end of this chapter.

Chapter 5 will concentrate on the findings, analysis, and results from NDT. Statistical analysis on bridge samples will be discussed prior to the test results. Next, Rebound hammer and UPV test results will be discussed. The discussion will be focused on concrete uniformity and correlation of the test results with concrete strength. These results will be used in developing the ANN together with the visual inspection and inventory data from the PWD.

Chapter 6 will focus on the findings, analysis, and results from the application of ANN in bridge inspection. First, results from data analysis are reviewed. These include the characteristic of data used, classification of data used in the testing and validation process, and data normalization. Next, the output from variables and hidden neurons selection are discussed which will lead to the determination of neural network structure applied in this study. Finally, results from the training, testing, and validation phase are outlined. Comparison between the actual rating and the predicted value given from the ANN are made to evaluate the neural network's performance.

Finally Chapter 7 will conclude all the discussion and findings in this thesis. All findings should be concluded and answer each of the objectives as been outlined in section 1.3. These include the condition of the selected bridges based on nondestructive evaluation, correlation between the NDT results and visual inspection conducted by the PWD inspectors, the most suitable parameters needed in developing the ANN for bridge inspection, and finally the evaluation on the performance of the neural network to be used as a supporting tool in bridge inspection process. Recommendations for future development will also be reviewed in this chapter.