PSZ 19:16 (Pind. 1/07)

DECLARATION OF THES	SIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name : LENN	IY SHERYME BT. JASMIN
Date of birth : 02 SI	<u>EPT. 79</u>
Title : <u>PHYS</u> <u>MUL</u>	SICAL PROPERTIES AND DURABILITY OF TI-BLENDED CEMENT MORTARS
Academic Session: 2006	/2007
I declare that this thesis is	classified as :
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
	I agree that my thesis to be published as online open access (full text)
I acknowledged that Unive	ersiti Teknologi Malaysia reserves the right as follows:
 The thesis is the pro The Library of University of the purpose of reso The Library has the exchange. 	operty of Universiti Teknologi Malaysia. ersiti Teknologi Malaysia has the right to make copies fo earch only. e right to make copies of the thesis for academic
185	Certified by:
SIGNATURE	SIGNATURE OF SUPERVISOR
790902-14-5436 (NEW IC NO. /PASSPORT NO.)	PROF. DR. SALIHUDDIN RADIN SUMADI NAME OF SUPERVISOR
	Date : 1/08/07

: * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction. "I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Materials)".

Signature Name of Supervisor Date

......

: PROF. DR. SALIHUDDIN BIN RADIN SUMADI01 AUGUST 2007......

* Delete as necessary

PHYSICAL PROPERTIES AND DURABILITY OF MULTI-BLENDED CEMENT MORTARS

LENNY SHERYME BINTI JASMIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Materials)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > AUGUST 2007

"I declare that this thesis entitled "*Physical Properties and Durability of Multi-Blended Cement Mortars*" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature Name Date

:

:

:

Lenny Sheryme Binti Jasmin.. 01 AUGUST 2007 ii

ALHAMDULILLAH

All Praise For Allah, Creator Of This Universe, Thanks For The Precious Iman & Islam You Bestowed On Me. Thanks For All The Strength And Knowledge You Granted On Me, And Peace Be Upon The Holy Prophet Nabi Muhammad s.a.w. All This Hardship I Dedicate To Some Special People In My Life Namely The Ever Loving Papa, Jasmin & Mama, Rose & My Fiancé, Azran. Endless Appreciation On All Sacrifices You Did For Me. My Ever Supportive Siblings Sheryza, Is & Jayhan, My Caring Supervisor, Prof. Salihuddin, Ever Loving Friends, Nurahmed, Lin,& Nisa, I love all of you dearly, Thanks.

ACKNOWLEDGEMENT

All praise be to Allah the Creator of this universe and peace be upon the holy Prophet Muhammad S.A.W. Firstly the author wishes to express gratitude to her research supervisor Professor Dr. Salihuddin Radin Sumadi for the continuous dedicated guidance and precious advice throughout this study. The author also wishes to express her gratefulness to Mr. Nurahmed Memon for both advice and guidance given. A word of gratitude is extended to the technical staffs of several labarotories in the university. Research colleagues and friends, particularly Lin, Fareh, Nisa, Siti and Puilai, are thanked for their help in solving day to day problems. CIDB grant and Maju Perkasa Sdn. Bhd. is acknowledge for their courtesy of sponsoring the raw materials in this research investigation. Finally, the author wishes to take this opportunity to express her greatest appreciations to her parents, family, Aunty Lind, and to her fiancé, Azran for their loving moral support and encouragement. Wassalam.

ABSTRACT

The application of mineral admixture as partial cement replacement in concrete leads to a reduction in construction cost. Usually the single mixture has limitation and some have contrasting influences on properties of concrete. The combination of more kinds of mineral admixtures is postulated to improve concrete properties. Since Rice Husk Ash is highly reactive pozzolan, it has led to the idea of focusing the study on the performance of Multi-blended pozzolan as partial cement replacement in mortar. Over eight different mixes were produced in which four mixes contained varying percentages of admixtures Multi Blended Cement, and the remainders were single mix (Binary Blended Cement) containing optimum percentages (based on literature study) of 20% Pulverized Fuel Ash, 20% Rice Husk Ash, 50% Slag, and 10% Palm Oil Fuel Ash. Three samples for each mix and for different types of tests were prepared. This work initially deals with compressive strength characteristics, water absorption, and total porosity on mortar cured (standard curing) for 7, 28, 60 and 90 days. The performance of optimum Multi Blended Cement mortar was studied in terms of ultimate compressive strength, water absorption and total porosity. The strength properties of the optimum mixes of Multi Blended Cement mortars was also examined at different curing regimes. This research also focuses on studying some durability aspects of the optimum mix of Multi Blended Cement mortars namely acid attack, and carbonation. The effects of saline seawater were also investigated for short term exposure. Finally a brief study was also carried on suitability of the optimum mixes of Multi Blended Cement mortars as a face sheet to produce lightweight non-load bearing sandwich block. From the results obtained, it was found that the early age strength of control, and Binary Blended Cement mortars on average were 20% higher than Multi Blended Cement mortars, and at later age both types were quite similar. The average strength of all mortars at 90 days was 59MPa. The total porosity and water absorption of control and Binary Blended Cement mortar were 28% and 21% total porosity, and 9% and 14% water absorption, higher than Multi Blended Cement mortar, respectively. The compressive strength of Multi Blended Cement mortar after 45 cycles dry and wet curing in seawater exhibited 24% higher than control mortar. The initial water curing for 7 and 14 days and continuous air curing also exhibited 13% and 21% (7 days), and 19% and 26% (14 days), higher early strength than continuous water and air curing, respectively. Multi Blended Cement system produced low permeability mortar compared to control, and Binary Blended Cement mortars. The strength and durability properties of Multi Blended Cement mortar are more pronounced than control and Binary Blended Cement mortar when it is provided with adequate curing.

ABSTRAK

Penggunaan bahan tambah mineral sebagai bahan gantian separa simen dalam konkrit boleh mengurangkan kos pembinaan. Campuran yang mengandungi satu bahan tambah lazimnya mempunyai had dan sebahagiannya memberi pengaruh yang bertentangan dengan sifat konkrit. Gabungan pelbagai bahan tambah mineral adalah benar dapat memperbaiki sifat konkrit. Disebabkan Abu Sekam Padi merupakan pozzolana yang aktif, ia telah memberi idea dalam kajian ini untuk memfokuskan prestasi mortar berasaskan pelbagai bahan tambah mineral sebagai bahan gantian separa simen dalam mortar. Terdapat 8 jenis campuran bahan tambah yang berbeza dihasilkan, di mana empat campuran terdiri daripada beberapa peratus campuran pelbagai bahan tambah dan selebihnya adalah campuran yang mempunyai satu bahan tambah yang terdiri daripada peratus kandungan yang optimum (berdasarkan kajian ilmiah) iaitu 20% Abu Terbang, 20% Abu Sekam Padi, 50% Abu Besi Tersanga dan 10% Abu Kelapa Sawit. Tiga sampel dihasilkan bagi setiap campuran dan bagi setiap ujikaji yang berbeza. Kajian ini pada awalnya menumpukan kepada ciri-ciri kekuatan mampatan, kadar penyerapan air dan jumlah keliangan sesuatu campuran mortar yang diawet (awetan piawai) selama 7, 28, 60 dan 90 hari. Prestasi mortar pelbagai bahan tambah yang optimum dikaji dari segi kekuatan mampatan muktamad, kadar penyerapan air dan jumlah keliangan. Sifat kekuatan mortar pelbagai bahan tambah yang optimum juga diuji dengan pelbagai jenis pengawetan. Kajian juga memfokuskan kepada aspek kebolehtahanlasakan mortar pelbagai bahan tambah yang optimum seperti serangan asid, dan pengkarbonatan. Kesan terhadap air laut (perubahan tercepat) pada tempoh dedahan yang singkat juga dikaji. Akhirnya, kajian secara umum kesesuaian penggunaan mortar pelbagai bahan tambah yang optimum sebagai lapisan yang mengapit blok ringan juga dilakukan. Daripada keputusan ujikaji yang diperolehi, ia didapati kekuatan awalan mortar kawalan dan mortar satu bahan tambah adalah purata 20% lebih tinggi dari mortar pelbagai bahan tambah dan pada akhir umur kedua-dua mortar adalah setara dengan mortar pelbagai bahan tambah. Kekuatan purata bagi semua mortar pada umur 90 hari adalah 59MPa. Jumlah keliangan dan penyerapan air mortar kawalan dan mortar satu bahan tambah adalah 28% dan 21% jumlah keliangan, dan 9% dan 14% penyerapan air, lebih tinggi daripada mortar pelbagai bahan tambah. Kekuatan mampatan mortar pelbagai bahan tambah selepas diawet kering dan direndam air laut sebanyak 45 putaran menunjukkan 24% lebih tinggi daripada mortar kawalan. Pengawetan permulaan di dalam air selama 7 dan 14 hari dan kemudian diawet di udara juga menunjukkan 13% dan 21% (7hari), dan 19% dan 26% (14hari) kekuatan awal yang lebih tinggi daripada awetan air dan udara secara terus. Sistem pelbagai bahan tambah telah menghasilkan kebolehtelapan yang rendah berbanding mortar kawalan dan mortar satu bahan tambah. Sifat kekuatan dan kebolehtahanlasakan mortar pelbagai bahan tambah ini adalah lebih baik daripada mortar kawalan dan mortar satu bahan tambah apabila ia diawet dengan sempurna.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEG	CLARATION	ii
	DEI	DICATION	iii
	ACI	KNOWLEDGEMENT	iv
	ABS	STRACT	v
	ABS	STRAK	vi
	TAI	BLE OF CONTENTS	vii
	LIS	T OF TABLES	XV
	LIS	T OF FIGURES	xviii
	LIS	T OF ABBREVIATIONS	XXV
	LIS	T OF SYMBOLS	xxviii
	LIS	T OF APPENDICES	xxix
1	INTF	RODUCTION	
	1.1	Introduction	1
	1.2	Research Problems	3
	1.3	Aim and Objectives	4
	1.4	Research Hypothesis	5
	1.5	Scope of research	5
	1.6	Significant of Research	6
	1.7	Thesis Organization	6
2	LITE	ERATURE STUDIES – BLENDED CEMENT AND	
	CON	CRETE DURABILITY	
	2.1	Introduction	9

2.2 Blended cement

	٠	٠
37	1	1
v	I	1

11

	2.2.1	Pozzolanic materials	12
	2.2.2	Pozzolanic reaction	13
	2.2.3	Types of pozzolans	14
		a) Rice Husk Ash (RHA)	15
		b) Palm Oil Fuel Ash (POFA)	17
		c) Pulverized-Fuel Ash (PFA) or	
		Fly Ash	18
		d) Ground granular blast furnace	
		slags (Slag)	19
		e) Silica Fume (SF)	20
	2.2.4	Binary Blended Cement (BBC)	21
		a) RHA/OPC	22
		b) POFA/OPC	24
		c) PFA/OPC	26
		d) Slag/OPC	27
		e) Silica fume/OPC	29
	2.2.5	Multi/Binary Blended Cements	
		a) Introduction	30
		b) The incorporation of PFA/SF into OPC	31
		c) The incorporation of Slag/SF into OPC	31
		d) The incorporation of PFA/RHA into OPC	32
		e) The incorporation of SF/Slag/PFA into OPC	33
		f) The incorporation of POFA / Timber Industrial	
		Ash (TIA) into OPC	34
2.3	Concret	e durability	34
2.4	Pore Str	ucture	35
	2.4.1	Definition of Porosity	36
		a) Capillary pores	36
		b) Gel pores	36
	2.4.2	Porosity governed by wbr	37
	2.4.3	Pore Structure Measurement Techniques	38
2.5	Perme	ability and Water Absorption	39
	2.5.1	Definition	40

	2.5.2	Permeability dependency on continuity	
		of pores and pore size distribution.	40
2.6	Influe	nce of pozzolans on Permeability	
	and Po	orosity	41
2.7	Chem	ical attack	42
	2.7.1	Acid attack	42
	2.7.2	Carbonation	43
	2.7.3	Effects of seawater on concrete	45
2.8	Factor	rs influencing the strength and durability	
	of con	icrete	47
	2.8.1	Water Binder ratio (wbr)	47
	2.8.2	Curing Process	48
	2.8.3	Compactness	49
	2.8.4	Water reducing agent (Superplasticizer)	49
	2.8.5	Influence of richness of the mix	
		on strength	50
2.9	Correl	lation between Engineering properties and	
	Micro	structural characteristics	51
	2.9.1	Relationship between Strength and	
		Porosity	51
	2.9.2	Relationship between Porosity and	
		Permeability	52
2.10	Concl	usions	53
RESEA	ARCH	METHODOLOGY	
3.1	Introd	uction	75
3.2	Test p	rogramme	75
3.3	Mater	ials	76
	a)	Cement	76
	b)	GGBFS (Slag)	77
	c)	PFA	77
	d)	RHA	77
	e)	POFA	78
	f)	Fine aggregates (sand)	79

	g)	Water	79
	h)	Water Reducing Agents (Superplasticizer)	79
3.4	Mix p	roportion	80
3.5	Castir	ng process	81
3.6	Curing	g process	81
3.7	Testin	ng Procedures	82
	3.7.1	Stage 1 : Water requirements	
		test on mortar	82
	3.7.2	Stage 2 : Establishment of sand and	
		binders ratio (s/b)	83
	3.7.3	Stage 3 : Establishment of the optimum	
		series of mix proportion of MBC mortar by	
		using the optimum sand and binders ratio.	84
		a) Compressive strength test	84
		b) Porosity test	84
		c) Water absorption test	86
	3.7.4	Stage 4 : Assessment on the strength	
		properties of the optimum MBC mortar at	
		different curing regimes	87
	3.7.5	Stage 5 : Assessment on the durability	
		properties of the optimum MBC mortar	88
		a) Carbonation test	88
		b) Acid attack	89
	3.7.6	Stage 6 : Application of the optimum MBC	
		mortar established in Stage 3 as face sheets	
		of lightweight aerated concrete sandwich block	89
		a) Introduction	89
		b) Lightweight masonry sandwich	90
		c) Casting of core (Aerated concrete)	90
		d) Casting of Sandwich block	91
		e) Testing of sandwich block	92

х

RESULTS AND DISSCUSIONS OF

4

THE DEVELOPMENT OF MBC MORTARS

4.1	Introduction	107
4.2	Stage 1 - Water requirement test	108
	4.2.1 Effect of wbr on various sand to	
	binders ratio (s/b) of MBC mixes	108
	4.2.2 Effect on wbr of MBC compared	
	with control mortar (with 0.1% sp)	108
	4.2.3 Effect of wbr on MBC mortar	
	compared to BBC mortar	109
4.3	Stage 2 - Establishment of optimum sand to	
	binders ratio (s/b) in terms of strength and wbr	110
4.4	Stage 3 – Establishment of the optimum mix	
	proportion of MBC mortar in terms of Strength, Water	
	absorption and Total Porosity test results by using the	
	optimum sand to binders (s/b).	111
	4.4.1 Strength development	111
	4.4.1.1 The strength development of	
	BBC compared to Control mortars	112
	a) RHA mortar	112
	b) PFA mortar	113
	c) POFA mortar	114
	d) Slag mortar	115
	4.4.1.2 Strength comparisons among	
	all BBC mortars.	116
	4.4.1.3 Strength development of MBC	
	compared to Control mortar.	117
	a) MA mortar	117
	b) MB mortar	118
	c) MC mortar	119
	d) MD mortar	120
	4.4.1.4 Strength comparisons among all	
	MBC mortars.	120

	4.4.1.5 Strength comparisons between	
	Control, MBC and BBC mortars.	122
	4.4.1.6 Conclusions	124
4.4.2	Total Porosity of mortar	125
	a) BBC mortars	125
	b) MBC mortars	126
	c) Control, MBC and BBC mortars	127
4.4.3	Water absorption test results	129
	a) BBC mortars	130
	b) MBC mortars	131
	c) Control, MBC and BBC mortars	131
4.4.4	Strength and Total porosity relationship	133
	a) BBC mortars	133
	b) MBC mortars	134
4.4.5	The relationship between compressive strength	
	and water absorption	135
	a) BBC mortars	136
	b) MBC mortars	136
4.4.6	Relationship between total porosity	
	and water absorption	138
	a) BBC mortar	138
	b) MBC mortar	139
4.4.7	X-Ray Diffraction analyses (XRD)	140
4.4.8	Overall performance of MBC mortars	
	to select the optimum mix	141
	a) MA mix	141
	b) MB mix	142
	c) MC mix	143
	d) MD mix	144

RESULTS AND DISSCUSIONS OF THE REMAINING PROPERTIES AND APPLICATION OF THE OPTIMUM MBC MORTAR

5.1	Introd	uction	185		
5.2	Stage	4 : Assessment on the strength			
		properties of the optimum MBC mortar			
		mixes at different curing regimes	185		
	5.2.1	Results on the strength of MBC mortar			
		at different curing regimes.	185		
	5.2.2	Results on compressive strength after the			
		wet and dry cycle curing in seawater	188		
		5.2.2.1 Strength of control mortar subjected			
		To 7 and 28 days pre-curing	188		
		5.2.2.2 Strength of MBC mortar subjected to			
		7 and 28 days pre-curing	189		
		5.2.2.3 Strength of MBC vs control mortar			
		Subjected to wet and dry curing	190		
5.3	Stage	Stage 5 : Assessment on the durability properties of mortar			
	5.3.1	Results on Carbonation of mortar.	192		
		5.3.1.1 Effect of carbonation on water			
		and seawater curing	192		
		5.3.1.2 Effect of carbonation on air curing			
		and natural weather condition 193			
		5.3.1.3 Effect of carbonation on control			
		vs MBC mortar	194		
	5.3.2	Acid Attack	195		
		5.3.2.1 Effect of pre-curing to mortar			
		on acid attack	195		
		5.3.2.2 Performance of MBC vs control			
		mortar on acid attack	196		
5.4	Stage	6 : Application of the MBC mortar	198		
	5.4.1	Introduction	198		
	5.4.2	Manufacturing of product	198		
		a) Aerated Lightweight concrete	198		

5

		b) MBC mortar – as the face sheet of the		
		Sandwich Block (SB)	199	
	5.4.3	Strength performance of sandwich block (SB)	200	
		a) The strength of SB compared to AB	200	
		b) The strength of SB compared to CB	201	
		c) The strength of AB compared to CB	202	
	5.4.4	Effect of curing on density of the blocks	202	
	5.4.5	Cracks and failure mode of blocks	203	
5.5	Concl	usions	204	
CONCLUSIONS AND RECOMMENDATION				
6.1	Concl	usions	224	

0.1	Conci	usions	
6.2	Recommendations for further studies		226
	6.2.1	Materials	226
	6.2.2	Engineering and chemical/microstructural	
		characteristics.	226

REFERENCES	227
APPENDICES A - E	237 - 241

6

LIST OF TABLES

Table No.	Title	Page
2.1	Chemical constituents and physical properties of OPC,	
	PFA, Slag, RHA and POFA	55
2.2	Strength development of test cylinders of concretes	
	containing silica fume (Hooton, 1993)	56
2.3	Pore characteristics of mortars containing Sulfate-Resistance	
	Cement and Silica Fume(Hooton, 1993)	56
2.4	Time required for capillaries to segmented	
	(Neville, 1995)	57
2.5	List of some substances that cause severe chemical attack	
	of concrete (Neville, 1995)	57
2.6	Ion concentration of individual salts (Neville, 1995)	58
3.1	Test Parameter	93
3.2	Category of tests	94
3.3	Chemical and physical properties	94
3.4	The references used to determine the % of fineness of RHA	96
3.5	The time grinding and the % of RHA fineness	96
3.6	The time grinding and the % of POFA fineness	96
3.7	The summary and comparison of % of ashes fineness	97
3.8	Series of mix proportion	
	a) BBC mortar	97
	b) MBC mortar	97
3.9	Sand and Binders contents for 1m ³	97
3.10	Specification of the Sandwich Block	98
3.11	Specification of the Aluminium powder	98
3.12	Aerated lightweight concrete mix design	98

List of various sand to binders ratio to be investigated	146
Series of mix proportion	
a) MBC mortar	146
b) BBC mortar	146
Flow value for various s/b with addition of Sp	147
Summary of wbr with addition of Sp that produce a	
flow of 105-115%	147
Flow value for various s/b ratios without addition of Sp	148
Summary of wbr with and without Sp that produce	
a flow of 105-115%	148
Flow values for Control mortar of various s/b ratio	
with addition of Sp	149
Summary of wbr of MBC-MC mortar compare with	
Control mortar	149
Flow values for MBC mortars	150
Summary of wbr for MBC mortars that produce	
flow of 105-115%	150
Flow values for BBC mortars	151
Summary of wbr for MBC mortars compared to BBC	
mortars producing flow of 105-115%	152
The wbr and the compressive strength of mortar for all s/b	
at constant flow of 105-115%	152
The wbr and the compressive strength of mortar without	
Sp at constant flow of 105-115%	153
The wbr and the compressive strength of mortar with	
0.1% Sp at constant flow of 105-115%	153
Effect of wbr on the total porosity of mortar	154
Measured water absorption of mortar	154
Results of water absorption of mortar after	
multiply with correction factor	155
Time required for capillaries to segmented	
(Neville, 1995)	155
Summary of performance of MBC mixes	156
	List of various sand to binders ratio to be investigated Series of mix proportion a) MBC mortar b) BBC mortar Flow value for various s/b with addition of Sp Summary of wbr with addition of Sp that produce a flow of 105-115% Flow value for various s/b ratios without addition of Sp Summary of wbr with and without Sp that produce a flow of 105-115% Flow values for Control mortar of various s/b ratio with addition of Sp Summary of wbr of MBC-MC mortar compare with Control mortar Flow values for MBC mortars Summary of wbr for MBC mortars that produce flow of 105-115% Flow values for BBC mortars Summary of wbr for MBC mortars that produce flow of 105-115% Flow values for BBC mortars Summary of wbr for MBC mortars that produce flow of 105-115% The wbr and the compressive strength of mortar for all s/b at constant flow of 105-115% The wbr and the compressive strength of mortar without Sp at constant flow of 105-115% The wbr and the compressive strength of mortar without Sp at constant flow of 105-115% The wbr and the compressive strength of mortar without Sp at constant flow of 105-115% Effect of wbr on the total porosity of mortar Measured water absorption of mortar Results of water absorption of mortar flow sill so f water absorption of mortar after multiply with correction factor Time required for capillaries to segmented (Neville, 1995) Summary of performance of MBC mixes

5.1	Strength of different curing regimes	205
5.2	Results on strength after wet and dry	
	curing in seawater	205
5.3	Depth of carbonation of MBC and Control mortar	
	at different curing regimes	206
5.4	Percentage of weight loss after immersed in	
	5% HCL solution	206
5.5	Strength of Investigated blocks	207
5.6	Weight and Density of investigated blocks	207

LIST OF FIGURES

FIGURE NO	. TITLES	PAGE
1.1	Thesis Organization	8
2.1	World production of cement according to	
	CEMBUREAU (Aitcin, 2000)	58
2.2	XRD patterns of pastes OPC, W_0 and 30% RHA, W_3	
	at w/c ratio 0.55 and hydrated at $20\pm 1^{\circ}$ C for different	
	ages (Qijun et al., 1999)	58
2.3	XRD patterns of various mixes at 12 months	
	(El Aziz <i>et al.</i> , 2004)	59
2.4	XRD pattern for RHA burnt at different temperatures	
	(Kapur, 1981)	59
2.5	XRD pattern for RHA containing crystalline silica	
	(Cook, 1986)	60
2.6	XRD pattern for RHA mainly amorphous silica	
	(Coutinho, 2003)	60
2.7	Skeletal structure of RHA particle	60
2.8	Phase composition of UK PFA	61
2.9	Photomicrographs of PFA (left) and OPC (right)	61
2.10	Strength development of RHA mixes	
	(Cook and Suwanvitaya, 1981)	
	a) Lime-RHA mortar	62
	b) OPC-RHA	63
2.11	Effect of POFA content on compressive strength	
	of concrete (Awal and Hussin, 1996b)	63
2.12	Effect of fineness of ash on compressive strength	
	of concrete (Awal and Hussin, 1996b)	64

2.13	Strength development of various Slag content	
	(Hogan and Muesel, 1981)	64
2.14	Strength development of various Slag content	
	(Roy and Idorn, 1982)	65
2.15	Hydrates between adjacent particles in Slag (Bakker, 1980)	65
2.16	Simplified model of paste structure (Powers, 1958)	66
2.17	Illustration of Permeability and Porosity	
	(Concrete Society Technical Report No. 31, 1988)	66
2.18	Relation between the depth of carbonation and	
	compressive strength of concrete after 2 years	
	(Neville, 1995)	67
2.19	Deflocculation of cement grains by superplasticizer	
	(Uchikawa, 1986)	68
2.20	Schematic representation of molecules of naphthalene	
	sulfonate condensate (Aitchin, 1992)	69
2.21	Relation between compressive strength of mortar	
	and porosity calculated from the volume of pores larger	
	than 20nm in diameter (Sersale et al., 1991)	69
2.22	Relationship between compressive strength and	
	porosity (Feldman & Beaudoin, 1991)	70
2.23	The relationship between compressive strength and	
	Mercury Porosity of OPC and OPC/PFA pastes.	
	(Marsh, 1984)	70
2.24	The relationship between compressive strength and	
	mean-volume pore radius (Marsh, 1984)	71
2.25	The relationship between compressive strength and mean-	
	volume pore radius of control OPC and 30% replacement	
	OPC/ASH mortar pastes (Salihuddin, 1993)	72
2.26	Relation between permeability and capillary porosity	
	of cement paste (Power, 1958)	72
2.27	The relationship between permeability and the volume	
	of pores of radius greater than 200A for OPC/RHA mortar	
	containing 10-30% replacement. (Salihuddin, 1993)	73

2.28	The relationship between permeability and the	
	volume of pores of radius greater than 200A for OPC/POFA	
	mortar containing 10-30% replacement (Salihuddin, 1993)	74
3.1	The flow of test program	99
3.2	Supplementary test for comparison between properties	
	of MBC and BBC mortars	100
3.3	Los Angelas Abrasion Machine (LAAT)	100
3.4	The optimum grinding time of RHA	101
3.5	12mm diameter and 800mm long Mild steel	101
3.6	The optimum grinding time of POFA	101
3.7	Sieve analysis	102
3.8	Materials used	102
3.9	Mortar Mixer	103
3.10	Casting into moulds size 70.6x70.6x70.6mm	103
3.11	Vibration table	103
3.12	Flow table	104
3.13	Compressive test using TONIPACT 3000 machine	104
3.14	Vacuum Saturation equipment	104
3.15	50x50x50mm cubes cut from 100x100x100mm by cutter mac	chine 105
3.16	Desiccator	105
3.17	Water absorption test (30 minutes immersion method)	105
3.18	Mould of Sandwich Block	106
3.19	Sandwich Block	106
4.1	Strength development of RHA mortar	157
4.2	Strength development of PFA mortar	157
4.3	Strength development of POFA mortar	158
4.4	Strength development of Slag mortar	158
4.5	Strength comparisons among all BBC mortars	
	without sp	159
4.6	Strength comparisons among all BBC	
	mortars with sp	159
4.7	Strength development of MA mortar	160
4.8	Strength development of MB mortar	160
4.9	Strength development of MC mortar	161

4.10	Strength development of MD mortar	161
4.11	Strength of MBC mortars with different wbr	162
4.12	Strength comparisons among all MBC mortars without sp	
4.13	Strength comparisons among all MBC mortars with sp	163
4.14	Total porosity of MBC mortars with different wbr	163
4.15	Strength comparisons between Control, MA	
	and BBC mortars without sp	164
4.16	Strength comparisons between Control, MA	
	and BBC mortars with sp	164
4.17	Strength comparisons between Control, MB and	
	BBC mortars without sp	165
4.18	Strength comparisons between Control, MB and	
	BBC mortars with sp	165
4.19	Strength comparisons between Control, MC	
	and BBC mortars without sp	166
4.20	Strength comparisons between Control, MC and	
	BBC mortars with sp	166
4.21	Strength comparisons between Control, MD and	
	BBC mortars without sp	167
4.22	Strength comparisons between Control, MBC and	
	BBC mortars with sp	167
4.23a	Strength comparisons of all mortars at	
	90 days (generally)	168
4.23b	Strength comparisons of all mortars	
	at 90 days (precisely)	168
4.24	Total porosity of BBC and Control mortars	169
4.25	Total porosity of MBC and Control mortars	169
4.26	Influences of PFA and RHA in porosity	
	of MBC mortars	170
4.27	Porosity of MA, Control and BBC mortars	170
4.28	Porosity of MB, Control and BBC mortars	171
4.29	Porosity of MC, Control and BBC mortars	171
4.30	Porosity of MD, Control and BBC mortars	172
4.31	Total porosity of BBC mortars with different wbr	172

4.32	Total porosity of MBC mortars with different wbr	173
4.33	Strength of BBC mortars with different wbr	173
4.34	Percentage of reduction in porosity by age	174
4.35	Percentage reduction in porosity between	
	7 and 90 days	174
4.36	Water absorption of BBC and Control mortars	175
4.37	Water absorption of BBC mortars with different wbr	175
4.38	Water absorption of MBC mortars with different wbr	176
4.39	Water absorption of MBC and Control mortars	176
4.40	Water absorption of Control, BBC and MA mortars	177
4.41	Water absorption of Control, BBC and MB mortars	177
4.42	Water absorption of Control, BBC and MC mortars	178
4.43	Water absorption of Control, BBC and MD mortars	178
4.44	The Relationship Between Compressive Strength and	
	Total Porosity of Control OPC and BBC mortars	179
4.45	The Relationship Between Compressive Strength and	
	Total Porosity of Control OPC and MBC mortars	179
4.46	The Relationship Between Compressive Strength and	
	Water Absorption of Control OPC and BBC mortars	180
4.47	The Relationship Between Compressive Strength and	
	Water Absorption of Control OPC and MBC mortars	180
4.48	The Relationship Between Water Absorption and	
	Total Porosity of Control OPC and BBC mortars	181
4.49	The Relationship Between Water Absorption and	
	Total Porosity of Control OPC and MBC mortars	181
4.50	XRD patterns of BBC pastes hydrated at 90 days	182
4.51	XRD patterns of MBC pastes hydrated at 90 days	182
4.52	XRD patterns of unhydrated RHA sample	183
4.53	XRD patterns of MD hydrated at 7, 28, 60 and 90 days	183
4.54	XRD patterns of OPC hydrated at 7, 28, 60 and 90 day	184
5.1	Strength development of MBC mortar at	
	different curing regimes	208
5.2	The strength different on effect of different	
	curing regimes.	208

5.3	Effect on periods of pre-curing on Control mortar	209
5.4	Effect on periods of pre-curing on MBC mortar	209
5.5	Strength of MBC and Control mortar subjected	
	to 7days pre-curing	210
5.6	Strength of MBC and Control mortar subjected	
	to 28days pre-curing	210
5.7	Effect on surface of mortar on the accelerated changes	
	subjected to wet and dry cycle curing in seawater	211
5.8	Depth of Carbonation of MBC mortar at different	
	curing regimes	212
5.9	Depth of Carbonation of Control mortar at	
	different curing regimes	212
5.10	Depth of Carbonation of MBC-MD and Control mortar	
	in air curing	213
5.11	Depth of Carbonation of MBC-MD and Control mortar	
	in natural weather	213
5.12	Carbonation of mortar at different ages subjected	
	to water curing	214
5.13	Carbonation of mortar at different ages subjected	
	to Seawater curing	215
5.14	Carbonation of mortar at different ages subjected	
	to air curing	216
5.15	Carbonation of mortar at different ages subjected	
	to natural weather	217
5.16	Comparative weight loss of Control and MBC mortar	
	continuously immersed in 5% HCL solution	218
5.17	Strength of mortar after 600hrs immersed in	
	5% HCL solution	218
5.18	Effect on MBC (left) and control (right) mortar subjected	
	To acid attack after 600hours of immersion	219
5.19	Effect penetration of acid HCL into mortar after	
	600hours of immersion	219

5.20	The expansion of 0.1% aluminium powder		
	for both methods	220	
5.21	The surface of sandwich block	221	
5.22	Failure occurred at outermost part of aerated concrete	222	
5.23	Crack pattern at aerated concrete	222	
5.24	Cracks at the side of aerated concrete	223	
5.25	Good bonding between the face sheet and core layer	223	

LIST OF ABBREVIATIONS

AB	Aerated concrete block
ACI	American Concrete Institute
Al ₂ 0 ₃	Aluminium oxide
Al ₂ O ₃ SiO ₂	Aluminosilicate
ASTM	American Society for Testing and Materials
BBC	Binary Blended cement
BS	British Standards
b/s	Binders to sand ratio
С	Carbon content
C_3A	Tricalcium aluminate
C_4A_3S	Tetracalcium aluminosilicate
CaCO ₃	Calcium carbonate
Ca ²⁺	Calcium ion
С-А-Н	Calcium Aluminate hydrate
C_2S	Dicalcium silicate
C_3S	Tricalcium silicate
CaO	Calcium oxide
Ca(OH) ₂	Calcium hydroxide
Ca-Al-Mg	Calcium Aluminate magnesium
CaSO ₄	Calcium sulphate
СВ	Comercial block
CO ₂	Carbon dioxide
CPC	Code practise
CS	Calcium silicate
C-S-H	Calcium silicate hydrate
Cl	Chloride ion Calcium Chloride (CaCl ₂)
Fe ⁺⁺	Ferric oxide

Fe_22O_3	Ferric hydroxide
GGBFS	Ground granular blast furnace slag
H^{+}	Hydrogen ion
H ₂ O	Hydrogen oxide
HCl	Hydrochloride acid
HSC	High strength concrete
H_2S	Hydrogen sulphate
K ₂ O	Potassium oxide
LAAT	Los Angelas Abrasion Test
LOI	Loss on ignition
MBC	Multi-blended cement
MgCl ₂	Magnesium chloride
MgO	Magnesium oxide
Mg(OH) ₂	Magnesium oxide
$MgSO_4$	Magnesium sulphate
MIP	Mercury intrusion porosimetry
MS	Malaysian Standard
Mvpr	Mean-volume pore radius
Na ⁺	Natrium ion
NaCl	Sodium chloride
Na ₂ O	Sodium oxide
NO _x	Nitrogen oxide
ОН	Hydroxyl ion
OPC	Ordinary Portland cement
P_2O_5	Phosphorus oxide
PFA	Pulverized Fuel Ash
POFA	Palm Oil Fuel Ash
РРТ	Part per thousand
PSD	Pore size distribution
RHA	Rice Husk Ash
SB	Sandwich block
SF	Silica Fume
SiO ₂	Silicon dioxide
SO ₃	Sulphur oxide

/
0
io

LIST OF SYMBOLS

P _T	percentage of total porosity
Wd	weight of dry specimen
Wsw	weight of specimen in water
Wssd	Weight of saturated specimen in air
WA	percentage of water absorption
Wd	weight of dry sample
Ww	weight of wet sample
%	Percentage

LIST OF APPENDICES

APPENDIX

TITLES

PAGE

А	Chemical Analysis Test Results of PFA	237
В	Chemical Analysis Test Results of RHA	238
С	Chemical Analysis Test Results of POFA	239
D	BET Surface Area Test Results	240
E	Specific Gravity Test Results	241

CHAPTER 1

INTRODUCTION

1.1 Introduction

Pozzolanic materials are widely used in concrete and mortars for various reasons, particularly for reducing the amount of cement required for making concrete and mortar which lead to a reduction in construction cost. Moreover most pozzolanic materials are by-product materials and the use of these materials leads to reduction in waste and save in energy consumption to produce cement. Most recently blended and multi-blended cement by incorporating industrial by-products/pozzolanic materials is becoming an active area of research because of their improved properties such as workability, long-term strength and durability. The common blending agents used are fly ash (PFA), rice husk ash (RHA), palm oil fuel ash (POFA), Slag, silica fume (SF), calcined clay etc. The improved properties such as rheology and cohesiveness, lower heat of hydration, lower permeability and higher resistance to chemical attack are reported in the literature (Khan *et al.*, 2000; and Mehta P.K., 1989).

In general, each of these materials possesses different properties and reacts differently in the presence of water (Toutanji *et al.*, 2004) and usually has limitations while some have contrasting influences on properties of concrete and mortar (Khan *et al.*, 2000). The combination of two or more kinds of mineral admixtures has emerged as a superior choice over single admixture to improve concrete and mortar properties (Bagel, 1998; Khan *et al.*, 2000; and Pandey *et al.*, 2000). The

development of ternary (containing two types of pozzolans) and quaternary (containing three types of pozzolans) blended cement is relatively rare. Though the binary blended cements BBC (containing one type of pozzolans) are commonly nowadays in use and further studies to investigate and improve the performance of BBC are in progress but even then those are not used at larger scale. Whereas, the research to develop the multi-blended cement containing three or more pozzolanic materials to replace cement partially is rather rare.

PFA normally results in lower early strength but improved workability, whereas SF causes downturn in workability due to high specific surface but higher reactivity than PFA. The effect on combination of SF and PFA showed increase in early strength due to the balancing effect in reactivity and water demand. Incorporation of Slag and PFA in OPC remains a common practice (Bagel, 1998) because Slag is widely applied in high performance concrete (Huiwen *et al.*, 2004). A few researches have demonstrated the suitability of the use of combination of Slag and SF as pozzolanic material by replacing cement partially. The combination of SF, Slag and PFA is reported to produce high strength and resistance to wet-dry exposures and freeze-thaw as experimentally demonstrated by Toutanji *et al.* (2004).

Since RHA is similar to SF in terms of pozzolanic activity because the former also contains significant amount of Silicon dioxide and a highly reactive pozzolanic material (Paya *et al.*, 2001; and Qijun *et al.*, 1999), thus the replacement of SF with RHA is one of the potential options to be considered. Also the research findings show POFA, as another pozzolanic material to be added in mortar to achieve its better performance (Salihuddin, 1993).

Recently there has been a growing trend towards the use of supplementary cementitious materials, whether natural, waste or by-products, in the production of blended cements because of ecological, economical and diversified product quality reasons (Noor *et al.*, 2006). One of the major options adopted for economic reason is to utilize local resources especially waste materials that would provide cost effectiveness and also a potential utilization of hazardous waste which would other wise causes environmental pollution.

Since Malaysia is the largest producer of Palm Oil in the world and also has a large milling paddy capacity, hence the agricultural fly ash is locally available in huge quantity as waste material. This has led to the idea to investigate the suitability of these materials to be incorporated in MBC as partial cement replacement. Also this may lead to resolve the open burning issue in the disposal of these waste materials which causes hazardous effects on the country's environmental conditions.

1.2 Research problems

In Malaysia the pace of development and construction activity achieved since last three decades was beyond expectations. It has spurred the demand for fast, costeffective and quality residential buildings. Cement is an expensive constituent of construction materials. Thus to reduce the cost of the construction material thereby reducing the over all cost of the project is becoming an active area of research and the need of the present time in almost all countries in general and in developing countries like Malaysia in particular. Various strategies are being adopted to achieve the cost effectiveness. Nevertheless, the application of agricultural and industrial byproducts and wastages to replace expensive conventional materials fully or partially is being considered as major technique in this regard.

The utilization of agricultural and industrial by-products offer triple benefits namely: conservation of fast declined natural resources, planned gainful exploration of waste materials, and release of valuable land for more profitable used. As the performance of mortars depends upon the admixtures added as cement replacement whereas the properties of these cement replacement admixtures are dependent on the sources from where those are obtained. It is therefore recommended that experimental studies to be carried out to examine the performance of blended or multi-blended mortars containing agricultural and industrial wastes/by products. This is why the present study is aimed at investigating the suitability of local agricultural and industrial by products as partial replacement of cements in order to produce MBC which is not only potentially cost effective but also exhibits high performance against aggressive environmental conditions.

1.3 Aim and objectives

The main aim of this study is to produce MBC mortar of adequate strength and durability which can sustain the internal and external effects of aggressive environment of a tropical region like Malaysia. The relative objectives to achieved the aim of study are as follows:

- 1. To establish the optimum binder to sand ratio of mortar mix.
- 2. To establish the optimum mix proportion of Multi Blended Cement in a mortar regarding strength, porosity and water absorption.
- To determine the durability performance of the mortar with MBC in terms of chemical attack such as carbonation, acid attack, and the effect of seawater.
- 4. Ultimately, to brief study on the application of the MBC mortar as the face sheets to produce lightweight non-load bearing sandwich block.

1.4 Research hypothesis

The MBC system can be utilized to produce high performance mortar. The low early strength of PFA and Slag in MBC mixes can be improved by the incorporation of high reactivity of RHA and POFA. On the other hand, incorporation of RHA and Slag generally will cause a downturn in workability. Whilst, incorporation of PFA in the system can enhance workability hence reduced the water binder ratio. Subsequently low water binder ratio (wbr) of MBC system would achieve low porosity and low absorption mortar compared with control OPC and BBC mortar. Therefore, MBC systems can potentially reduce or eliminate limitations inherent in individual materials (BBC systems). This MBC system is low in alkalinity that contain less amount of CH and also more homogenous and dense mortar, which can potentially withstand chemical attack when exposed to hostile environment compared to control OPC mortar.

1.5 Scope of research

The study is fully experimental in nature and focuses on the development of multi-blended cement (MBC) mortar of optimum mix (sand: binder). The study specially emphasizes to investigate the appropriate proportion of constituents of MBC. The constituents adopted as partial replacement of cement to produce MBC were GGBFS (slag), PFA, RHA, and POFA along with the principal constituent, cement. The content of cement, slag, and POFA was kept constant through out the experimental study. The performance of optimum MBC mortar was studied in terms of ultimate compressive strength, water absorption, total porosity and durability.

The durability of MBC mortar produced was tested in terms of its resistance to acid attack, carbonation, and the saline water from sea. Finally attempt in limited extent was made to investigate the suitability of MBC mortar developed, as the face sheets to produce lightweight non-load bearing sandwich masonry unit with lightweight aerated concrete as core. The thickness of the face sheet provided was kept constant at 10 ± 2 mm. The performance of the sandwich masonry unit was examined in terms of its ultimate compressive strength, physical failure pattern, and the apparent composite behavior of the two materials at their interface.

1.6 Significance of Research

The study is significant to produce high performance MBC mortar by using the agricultural and industrial waste/by-products. The MBC mortar exhibited the compressive strength of at least at par with the OPC mortar and also better performance in aggressive environment of Malaysia by withstanding the internal and external effects of both short term and long term as well. This is expected due to the low permeability and low porosity of MBC mortar mixes. The ultimate product of MBC mortars would be economical. The study is also important in the effort to resolve the burning issue with regard to the disposal of the huge quantity of waste material from Palm Oil and Paddy industry in Malaysia. MBC mortar can be applied as face sheets to produce lightweight sandwich masonry units in order to reduce over all weight and cost of the building and also a step towards industrialization of the building system.

1.7 Thesis Organization

This thesis is divided into six chapters, which can be referred in Figure 1.1. Chapter 1 was described about the introduction of the study, research problems, aim and objectives, research hypothesis, scope of research and significance of research. Chapter 2 was divided into two sections, which was one section described detailed about the literature review of the Blended Cement. Whilst, the other section described about concrete durability. Chapter 3 included the details of test program (stage wise), materials, mix proportions, casting of specimens, curing methods and testing methods. The results and discussion of the study was divided into two chapters, which is Chapter 4 and Chapter 5. Chapter 4 discussed on the results obtained from tests conducted from stage 1 to stage 3 that focused on the development of MBC mortars to establish the optimum mix proportion of MBC mix. Whilst, Chapter 5 discussed mainly about the MBC mortar durability, other properties and the application using the optimum MBC mix that were the results obtained from tests conducted from stage 4 to stage 6. Chapter 6 is summarized the conclusions for all sections. It was divided into two parts; brief conclusions and detailed conclusions. Detailed conclusions were in three sections, which are conclusions for water requirement test, engineering properties, and chemical properties and microstructural characteristics of mortars.

The results obtained from tests conducted from stage 4 to stage 6

a) **Stage 4** - Assessment on the strength properties of MBC mortar at

different curing regimes.

- b) Stage 5 Assessment on the durability properties of MBC mortar.
- c) **Stage 6** Application of the MBC mortar.

Chapter 6 Brief conclusions and detailed conclusions (water requirement test, engineering properties, and chemical properties and pore structure characteristics of mortars)

Figure 1.1 Thesis Organization