PSZ 19:16 (Pind. 1/07) UNIVERSITI TEKNOLOGI MALAYSIA			
DECLARATION OF THESIS			
Author's full name :	FELICIA THI	EN YING CHIK	
Date of birth :	26 / 1	0 / 1982	
1 nic		FERENT CONCRETE STRENGTH ON INTERIOR RC BEAM-COLUMN JOINT	
Academic Session : 2	006/2007		
I declare that this thesis is classi	fied as :		
CONFIDENTIAL	(Contains cond Act 1972)*	lifential information under the Official Secret	
RESTRICTED	(Contains restri Where research	icted information as specified by the organization n was down)*	
✓ OPEN ACCESS	I agree that my (full text)	thesis to be published as online open access	
I acknowledged that Universiti	Teknologi Malaysia	a reserves the right as follows:	
 The thesis is the property of Universiti Teknologi Malaysia. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only. The Library has the right ot ake copies of the thesis for academic exchange. 			
		Certified by :	
SIGNATURI	E	SIGNATURE OF SUPERVISOR	
821026-13-590	5	PM. DR. RAMLI ABDULLAH	
(NEW IC NO. / PASSPO	ORT NO.)	NAME OF SUPERVISOR	
Date : 19 NOVEMBER 20	007	Date: 19 NOVEMBER 2007	

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I hereby declare that I have read this thesis and in my opinion to this thesis is sufficient in terms of scope and quality for the award of the Master of Civil Engineering".

Signature	:	
Name of Supervisor	:	PM. DR. RAMLI ABDULLAH
Date	:	19 NOVEMBER 2006

INFLUENCE OF DIFFERENT CONCRETE STRENGTH ON THE BEHAVIOR OF INTERIOR REINFORCED CONCRETE BEAM-COLUMN JOINT

FELICIA THIEN YING CHIK

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Civil Engineering

> Faculty of Civil Engineering University of Technology Malaysia

> > NOVEMBER 2007

"I declare that this thesis entitled "Influence of Different Concrete Strength on the Behaviour of Interior Reinforced Concrete Beam-Column Joint" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree."

Signature:_____Name:FELICIA THIEN YING CHIKDate:19 NOVEMBER 2007

Dedicated to

To my beloved parents and brothers.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor, Assoc. Prof. Dr. Ramli Abdullah who had taken a lot of efforts to meticulously go through my work and came up with helpful suggestion. Without helping from Dr., I surely came into deep problem in completing this study.

Secondly, I would like to acknowledgement my thanks to my fellow friends, all laboratory staff and Mr. Hii How Nguong for their cooperation and endless patience guiding me when I got problems. Their cooperation indeed make my work became easier and faster.

Finally, I would like to express my heartfelt gratitude to my family, for their support, constructive suggestion and also criticism.

ABSTRACT

The concreting of the beams and slabs at a particular floor level is carried out together with the beam-column connection zone using the same grade of concrete. In the case of the columns constructed from concrete of higher strengths than that of the beams, such concreting sequence forms beam-column connection zones with concrete of lower strengths than that in the columns. This thesis presents the comparisons of the test results on 6 internal column specimens, in which the influence of the lower concrete strength and the horizontal links in the connection zone, on the compression capacities of the columns was investigated. In general the columns and connection zones were of Grade C70, Grade C40 and Grade C25 concretes. The connection zone in five of the column specimens were cast with Grade C25 concrete, while that in the other one was with Grade C40. The test results show that although the ultimate load of the column with the connection zone from Grade C25 concrete is 25 % lower, it is still higher than the design load of the column calculated using Grade C70 concrete. The use of links also improves the capacity of the connection zone to a level beyond the capacity of the zone cast with Grade C25 concrete. It may therefore be concluded that the design calculations for the columns with the concrete strength of the order of 30 N/mm² higher than that in the connection zone, may safely be done based on the column concrete strength.

ABSTRAK

Pengkonkritan rasuk dan papak pada sesuatu aras dilakukan sekali dengan zon sambungan rasuk-tiang menggunakan konkrit dari gred yang sama. Dalam kes tiang dengan konkrit berkekuatan lebih tinggi dari rasuk, langkah pengkonkritan tersebut menghasilkan zon sambungan rasuk-tiang dengan kekuatan konkrit yang rendah berbanding kekuatan konkrit tiang. Tesis ini memaparkan perbandingan keputusan ke atas 6 spesimen tiang dalaman, di mana pengaruh kekuatan konkrit yang lebih rendah serta pengaruh perangkai dalam zon sambungan ke atas keupayaan mampatan tiang diselidiki. Secara umumnya tiang terdiri daripada konkrit Gred C70, Gred C40 dan Gred C25. Lima daripada specimen tiang mempunyai zon sambungan dari Gred C25, manakala satu lagi dari Gred C40. Keputusan ujikaji menunjukkan walaupun beban muktamad tiang dengan zon sambungan dari konkrit Gred C25 adalah 25 % lebih rendah, ianya masih lebih besar dari beban reka bentuk keseluruhan tiang yang dikira berdasarkan konkrit Gred C70. Penggunaan perangkai dalam zon sambungan juga dapat meningkatkan keupayaan zon sambungan ke tahap melebihi keupayaan zon dengan konkrit Gred C25. Dengan itu, dapat disimpulkan bahawa bagi tiang dengan kekuatan konkrit sehingga 30 N/mm² lebih tinggi dari kekuatan konkrit dalam zon sambungan, kiraan reka bentuknya masih boleh dilakukan berdasarkan kekuatan konkrit tiang.

TABLE OF CONTENTS

TITLE

DECLARATION	
DEDICATION	
ACKNOWLEDGEMENTS	
ABSTRACT	
ABSTRAK	
TABLE OF CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
LIST OF SYMBOLS	
LIST OF APPENDICES	

1 INTRODUCTION

CHAPTER

1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Study	5

2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Beam-Column Connection in	
	Multistorey Building	7
2.3	Forces Acting on Interior Beam-Column	
	Connection	8

PAGE

2.4	Effect	of Column Strength to Beam-Column	
	Connee	ction	9
2.5	Forces	Acting in Connection Zone	10
2.6	Joint N	Iechanism	11
2.7	Comm	on Defects of Joints	12
2.8	Failure	e in Connection Zone	13
2.9	Factors	s Affecting the Behavior of Beam-	
	Colum	n Connection	
	2.9.1	Method of Construction	15
	2.9.2	Longitudinal Reinforcement	16
	2.9.3	Transverse Reinforcement	17
	2.9.4	Concrete Compressive Strength	19
	2.9.5	Floor Depth to Column Width Ratio	22
2.10	Summa	ary	24
EXPE	ERIMEN	NTAL WORK	
0.1	T , 1		20

3

3.1	Introduction	28
3.2	Test Specimens	29
3.3	Design of Test Specimens	30
3.4	Concrete	31
3.5	Steel Reinforcement	32
3.6	Concreting Method	
3.7	Specimen Preparation	
	3.7.1 Formwork	33
	3.7.2 Reinforcement	34
	3.7.3 Concreting and Curing	35
3.8	Testing Procedure	36

TEST RESULTS 4

4.1	Introduction	43
4.2	Behavior of Specimen During The Test	44
4.3	Test Results	45

5 ANALYSIS AND DISCUSSION

	5.1	Analysis		50
		5.1.1	Influence of Sandwiched Concrete Column	51
		5.1.2	Influence of Additional Reinforcement and	
			Restrained Beam	51
		5.1.3	Influence of Concrete Strength	52
	5.2	Discus	sion	53
6	CONC	CLUSI	ON AND RECOMMENDATION	
	6.1	Conclu	ision	56
	6.2	Recom	nmendation	58
REFER	ENCES	5		60-62

APPENDICES	63-83
	05 05

LIST OF TABLE

3.1	Details of specimens	37
3.2	Amount of Material Needed for Concrete Mixing	37
3.3	The Results of Tensile Test	38

Comparison of testing results with BS 8110

TITLE

Compressive strength for each segment on the day of

TABLE NO.

testing

Testing results

4.1

4.2

5.1

PAGE

46

47

56

LIST OF FIGURE

FIGURE NO.	TITLE	PAGE

2.1	Types of Joint	25
2.2	Forces on Interior Joint	25
2.3	Idealized behavior of an Interior Beam Column Joint	26
2.4	Shear resisting mechanism	26
2.5	Types of Failure Mode	27
2.6	Types of Tie Configuration	27
3.1	Geometry and detailing of the specimens	37
3.2	Universal Testing Machine	37
3.3	Specimen preparation for specimens S1 to S6	38
3.4	Flow chart of research methodology	39
3.5	Concreting Stage for Specimen S1 to S6	40
4.1	Appearance of specimens after testing	48
4.2	Graph of ultimate load versus deformation for all specimens	49

LIST OF SYMBOL

Т	- Tension force
С	- Compression force
V_{j}	- Shear load joint has to resist
A_s	- Reinforcemnt steel area
f_y	- Steel yield Strength
V_{col}	- Column shear force
С	- Column side for normal-strength concrete column
C_{eqv}	- Equivalent column side for high-strength concrete
$(E_{cc})_H$	- Modulus of elasticity for high-strength column
$(E_{cc})_N$	- Modulus of elasticity for normal – strength column
P_o	- Cross section capacity of a column under concentric load
$lpha_1$	- Constant
f'_c	- Concrete cylinder strength
A_g	- Gross area of the column
f'_{ce}	- Effective column strength
P _{test}	- Maximum load carried by the test specimen
f'_{cc}	- Cylinder compressive strength of column concrete
f'_{cs}	- Cylinder compressive strength of slab concrete
f'_{cp}	- Apparent compressive strength of floor concrete in column test
f'_{cf}	- Cylinder compressive strength of slab concrete
Ν	- Axial loading on column
A_c	- Area of column at connection joint
f_{yv}	- Characteristic strength of the link reinforcement
A_{sv}	- Area of links
h_c	- Thickness of column

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
А	Tensile test results	64-72
B1	Concrete mix design Grade C25	73
B2	Concrete mix design Grade C40	74
B3	Concrete mix design Grade C70	75
C1	Details of Testing Results for Specimen S1	76
C2	Details of Testing Results for Specimen S2	77
C3	Details of Testing Results for Specimen S3	78
C4	Details of Testing Results for Specimen S4	79
C5	Details of Testing Results for Specimen S5	80
C6	Details of Testing Results for Specimen S6	81
D	Calculation Example for Column Compressive	82
	Strength and Ultimate Load	

CHAPTER 1

INTRODUCTION

1.1 Background

For reasons of economy, concrete columns are often made with higher strength concrete than that in the beams and slabs they support. In the preferred method of construction, the slab is cast continuous through the beam-column joint. As a result, that part of the column forming the joint between the beam and the column is made with a lower grade of concrete than that in the rest of the column. Consequently, the behavior of reinforced concrete beam-to-column joints has become a topic of particular challenge to researchers for the last 30 years or so. While much progress has been made in this time on the fronts of experimental research and design, many new unanswered questions have also appeared.

In present day construction practice, it is very common that the columns being designed and constructed within concrete of higher strength than that of the surrounding beam or slab system. High strength concrete is a relatively new construction material. Technology for producing high strength concrete has sufficiently advanced that concretes with compressive strength up to 100 N/mm² are commercially available and strengths much higher than that can be produced in laboratories. High strength concrete offers significantly better structural engineering properties, such as higher compressive strengths, higher stiffness, and better durability, when compared to conventional normal strength concrete. Thus, high strength concrete is an obvious choice in protecting building against the extreme loading conditions.

Besides, according to the investigation carried out by Marzouk et. al. (1996), it has been found that the use of high-strength columns increased connection shear strength compared to normal-strength concrete by about 5 percent in the case of no moment and 17 percent in the case of high moment. Not only was shear strength increased but the connection performance was greatly enhanced by the use of highstrength concrete columns.

For ease of construction, the floor system including the portion of column intersecting with the beam or slab system is cast using concrete of lower strength than the rest of the column. Thus, there is a problem of determining what concrete strength to use in assessing the compressive strength of the column when it is traversing through the floor system (Siao, 1994). To develop the full flexural capacity of beams, which are usually of weaker design than columns, the beam-tocolumn connection (also referred to as joint) must maintain its strength as well as stiffness during the loading cycles.

This paper reported experimental results of tests with properly modeled confinement conditions. There were six reinforced concrete sandwich column specimens, consisting of high-strength concrete column with a lower strength concrete central section which acted as the interior beam-column connection. The results show that the higher compressive strength at upper and lower part of the column enhanced the performance of the lower strength central portion of the column.

1.2 Problem Statement

Production of high strength concretes with compressive strengths exceeding 80 N/mm² is now technically and economically feasible in commercial ready mix concrete plants. It is not envisioned that the whole complete frame system will be constructed in the future using concrete with 80 N/mm² concrete strength (Marzouk et. al., 1996). Hence, further investigations are needed to develop and evaluate more research data to determine whether it is realistic and adequate for high-strength concrete to be constructed at the beam-column connections.

Current code provisions for the design of beam-column connections are based on the test results of connections constructed with relatively low compressive strengths not exceeding 40 N/mm². Nowadays, the floor or beam concrete commonly has a compressive strength of 25 N/mm², while that for the column maybe 40 N/mm² or greater. Thus, one design issue becomes whether the column strength should be based on the 25 N/mm² floor strength, the 40 N/mm² column strength, or some value in between due to the restraint conditions. Therefore, results of tests conducted on six combination of concrete strength on interior columns were evaluated.

1.3 Objectives

The main objective of this research investigation is to study and evaluate the behavior for beam-column connections constructed with combinations of high strength concrete columns and normal strength concrete beams. As a whole, the objectives for this study are:

- a) To study the failure characteristics of reinforced concrete column under ultimate compressive strength.
- b) To study the effect of normal concrete strength at beam-column connection to the ultimate compressive strength of column.
- c) To study the effect of shear link and restraint beam at connection zone to the ultimate compressive strength of column.

1.4 Scope of Study

This paper carried out test on six specimens with the concrete strength as the variable. The specimens were axially loaded sandwich columns with the size of 150 x 150 mm and 1200mm in length. The scope of the research includes:

- (a) The specimens were interior reinforced concrete columns tested for the compressive strength. The compression load was subjected to the end of the column until it failed.
- (b) The specimens had the combinations of three different concrete strengths which were Grade 25, Grade 40 and Grade 70. Generally, the beam or the joint had the concrete strength of Grade 25, while the upper and lower column had the concrete strength of Grade 40 and Grade 70.
- (c) One specimen was provided with additional reinforcement in form of shear links at the connection zone. The other five specimens had no additional reinforcement at the connection.
- (d) One specimen was provided with beam restraint at the connection zone to study the difference between the restraint and unrestraint specimens.
- (e) Three steps of concreting the column were employed, that is the concreting of lower column until the beam's soffit, followed by the concreting of beam including column at the particular level, and finally the concreting of the upper column.
- (f) The main reinforcement in all specimens was from the Grade 460 steel bars while the shear link applied was Grade 250. The quantity and the detailing of main reinforcement were the same for all specimens.