7)

	PSZ 19:16(Pind.1/97 UNIVERSITI TEKNOLOGI MALAYSIA
BOR	ANG PENGESAHAN STATUS TESIS *
JUDUL :	APPLICATIONS OF ENGINEERING THEORIES IN STRUCTURAL FORENSIC INVESTIGATION
	SESI PENGAJIAN : <u>2006/2007</u>
Saya	NORAIDAH BINTI YAHYA
	(HURUF BESAR)
mengaku men Universiti Tek	nbenarkan tesis (PSM /Sarjana/ Doktor Falsafah)* ini disimpan di Perpustakaan nologi Malaysia dengan syarat-syarat kegunaannya seperti berikut :
 Perpustak pengajian Perpustak institusi p 	lah hak milik Universiti Teknologi Malaysia. caan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan sahaja. caan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara pengajian tinggi ndakan (✓)
	SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan dimana penyelidikan dijalankan)
1	TIDAK TERHAD
	TANGAN PENULIS) (TANDATANGAN PENYELIA)
JALAN CAMA KOTA DAMA	C A GUGUSAN MELATI PROF. DR. AZLAN BIN ABD. RAHMAN AR 4/5 SEKSYEN 4 Nama Penyelia INSARA ING JAYA, SELANGOR
Tarikh : <u>05</u> /	Mei 2007 Tarikh: 7/5/2007
CATATAN :	* Potong yang tidak berkenaan.

Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil-Structure)"

Signature Date

:

alenar Name of Supervisor : PROF. DR. AZLAN BIN ABD. RAHMAN 7/5/2007

APPLICATIONS OF ENGINEERING THEORIES IN STRUCTURAL FORENSIC INVESTIGATION

NORAIDAH BINTI YAHYA

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering University Teknologi Malaysia

> > MEI 2007

I declare that this thesis entitled "*Application of Engineering Theories in Structural Forensic Investigation*" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

> Signature Name Date

:

:

:

Mu

NORAIDAH BINTI YAHYA 05 Mei 2007 To my beloved mother and father

ACKNOWLEDGEMENT

IN THE NAME OF ALLAH THE MOST GRACIOUS AND MERCIFUL

In presenting this dissertation, I wish to express my sincere and utmost thanks to all who have helped me in the preparation and completion of this report especially to;

Government of Malaysia for providing the opportunity and scholarships in pursuing this study;

My supervisor, Professor Dr. Azlan bin Abd. Rahman for his invaluable advice and guidance throughout the course of this project;

Ir. Haliza binti Md. Zin, Ketua Penolong Pengarah Kanan, Jabatan Kerja Raya Malaysia for her full understanding and support;

Hanizah binti Argadan, for her kind assistance in case study collection and also valuable ideas and suggestions in completing this dissertation;

And last, but by no means least, my deepest appreciation and thanks to my family for their continuous encouragement in all aspect of my study.

ABSTRACT

Structures fail due to various causes and reasons. Over the years many hypotheses and engineering theories have been used to investigate these failures. Boundary condition and load path mechanism theory are among the engineering theories that have been applied in the structural forensic investigation of failed civil engineering infrastructures. These theories were derived from the theory of solid mechanics or strength of materials which deal with the study of forces and their effects on bodies that are in rest (static) or in motion (dynamic). In this paper, two selected case studies (static) involving structure failure in terms of collapse were analysed. With reference to the original forensic engineering investigation report, the case studies were analysed in terms of the methodology of investigation, application of engineering theories and approach in developing failure hypothesis. From this study, the qualitative analysis of the latest case of structural failures in Malaysia was compiled for academic purpose and the investigation techniques in structural forensic failure in practice were documented for use as reference. From this analysis, the general guideline on the use of engineering theories in forensic engineering is proposed.

ABSTRAK

Kegagalan struktur berpunca daripada pelbagai sebab. Biasanya untuk menyiasat kegagalan tersebut, pelbagai hipotesis dan teori kejuruteraan telah digunakan. Antara teori kejuruteraan yang digunakan dalam penyiasatan kegagalan infrastruktur kejuruteraan adalah had sempadan dan mekanisma aliran beban. Teori ini adalah diasaskan dari teori mekanik pepejal yang melibatkan kajian daya dan kesannya kepada jasad dalam keadaan rehat (statik) atau dalam keadaan bergerak (dinamik). Dalam kertas projek ini, dua kajian kes (statik) telah dipilih untuk dikaji dari segi metodologi penyiasatan, penggunaan teori kejuruteraan dan pendekatan yang diambil dalam merangka hipotesis kegagalan. Dari kajian ini, analisis kualitatif bagi kejadian kegagalan struktur terkini didokumentasi untuk kegunaan sebagai rujukan. Dari analisis ini juga, garis panduan umum bagi penggunaan teori kejuruteraan dalam penyiasatan kegagalan struktur dicadangkan.

TABLE OF CONTENTS

CHAPTER TITLE

1

2

DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABST	ГКАСТ	v
ABST	ГКАК	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	xii
LIST	OF FIGURES	xiii
LIST	OF ABBREVIATIONS	XV
LIST	OF SYMBOLS	xvi
LIST	OF APPENDICES	xvii
INTR	RODUCTION	1
1.1	Introduction	1
1.2	Significance of Study	2
1.3	Objectives and Scope of Study	3
1.4	Case Study	3
LITE	CRATURE REVIEW	4
2.1	Introduction to Forensic Engineering	4
2.2	Concept of Failure in Civil Infrastructures	5

2.2.1	Failure Occurrence		5
2.2.2	Modes of Failure		
2.2.3	Causes of Failure		
2.2.4	Scientifi	c Method of Determining	
	Cause(s)	of Failure	7
Engine	eering The	eories used in Structural Failure	
Analy	sis		8
2.3.1	Engineer	ing Mechanics	9
	2.3.1.1	Stress Analysis	9
		Equilibrium of Forces	10
		Stress and Strain Relation	11
	2.3.1.2	Basic Material Behaviour	13
	2.3.1.3	Concepts of Structural	
		Behaviour	14
	2.3.1.4	Basic Behaviour of Structural	
		Systems	15
		Frame Structure	15
		Roof Truss	15
2.3.2	Structura	ll Analysis	16
	2.3.2.1	Method of Analysis	16
	2.3.2.2	Loads Acting on Structures	17
		Loads Path Mechanism	18
	2.3.2.3	Boundary Conditions (Support	
		Condition)	19
		• Support Types	19
		Support Reactions	20
	2.3.2.4	Deformations of Structure	21
	2.3.2.5	Stresses and Forces	22
	2.3.2.6	Strut and Tie Theory	22
		Basic Concepts	23
		• Strut, Ties and Nodes	23
		• Design of B & D Regions	24
		STM Model Design Concept	26
2.3.3	2.3.3 Concept of Structural Design		27

2.3

2.4	Reinfo	Reinforced Concrete Structure2	
	2.4.1	Strength Development of Concrete	29
	2.4.2	Detailing and Placement of Reinforcing	
		Steel	30
2.5	Steel S	Structure	33
	2.5.1	Cold Formed Steel Structure	34
		Bracing in Roof Truss System	34
2.6	Design	n Standards and Relationship To Structural	
	Perfor	mance	36
	2.6.1	Structural Safety	37
	2.6.2	Probabilistic Calculation of Safety Factors	38
2.7	Princi	ples of Structural Assessment	39
	2.7.1	Structural Safety and Serviceability	40
	2.7.2	Cost Minimisation	41

3 METHODOLOGY

4

3.1 Flow Chart of Study 42 3.2 Study Approach 43 3.3 Case Study Selection 43 3.4 Analysis of Case Study 44 Analysis on The Effect of Boundary Condition to 3.5 The Structural Behaviour 45 3.5.1 Support Boundary Condition 46 3.5.2 Member Boundary Condition 47 **CASE STUDY 1 : THE COLLAPSE OF ROOF 48 TRUSS IN SCHOOL PROJECT** 4.1 Background 48 Structural System 49 4.1.1 4.1.2 Causes of Failure 51 4.1.3 Modes and Mechanism of Failure 52

4.1.4 Methodology of The Forensic Investigation 54

42

4.2	Approach in Developing Failure Hypothesis		54
	4.2.1	Visual Inspection	54
	4.2.2	Material testing	55
	4.2.3	Analysis of Truss System	55
		Geometric Properties	56
		Load Assumptions	56
		Boundary Condition	57
	4.2.4	Truss Design Check	59
		Member Capacity	59
		Joint Capacity	60
	4.2.5	Verification of As-built Roof System	61
	4.2.6	Summary of Approach in Developing	
		Failure Hypothesis	62
4.3	Applic	cation of Engineering Theories in Failure	
	Analy	sis	63
	4.3.1	Truss Analysis Process	64
		Geometric Properties	64
		• Member and Support Boundary	
		Condition	64
	4.3.2	Truss Design Checking Process	65
		Material Strength	65
		Section Properties	65
	4.3.3	Stability Check	65
4.4	Analy	sis on The Effect of Boundary Condition to	
	The St	tructural Behaviour of Truss System	66
	4.4.1	Support Boundary Condition	66
	4.4.2	Member Boundary Condition	68
		Y 2 : THE COLLAPSE OF THE CLUB	70
HOUS	SE PRO	DJECT	
5.1	Bacho	round	70
5.1	1 Background 7		

5.1.1	Structural System	71
5.1.2	Causes of Failure	71

5

APPENDICES			85-102	
REFERENC	ES			82
	6.3	Recon	nmendations for Future Study	81
		Theor	es in Structural Failure Investigation	80
	6.2	Gener	al Guideline on The Use of Engineering	
	6.1	Lesson	n Learned From Forensic Investigation	78
6 CONC		CLUSI	ONS AND RECOMMENDATIONS	78
		Analy	sis	77
	5.3	Applic	cation of Engineering Theories in Failure	
		5.2.3	Verification of The Construction Drawing	76
		5.2.2	Material testing	76
		5.2.1	Visual Inspection	75
	5.2 Approach in Developing Failure Hypothesis		ach in Developing Failure Hypothesis	75
		5.1.4	Methodologies of Forensic Investigation	75
		5.1.3	Modes and Mechanism of Failure	73

LIST OF TABLES

TABLE NO.

TITLE

2.1	Partial list of the loads used in a conventional design	
	of a building	18
2.2	Basic Concepts of STM	23
3.1	Loads Assumption	46
3.2	Geometric Properties of the Roof Truss Member	46
4.1	Dimensions of Truss Chord and Web Member	56
4.2	Loads Assumption	57
4.3	Support Boundary Condition	58
4.4	Design Strength, Py for Capacity Check	59
4.5	Capacity Check for Fastener	60
4.6	Summary of Approach in Developing Failure Hypothesis	63
4.7	Effect of Support Boundary Condition to the Internal	68
	Forces of Arch Shape Truss	
4.8	Effect of Member Boundary Condition to the Internal	69
	Forces of Arch Shape Truss	

LIST OF FIGURES

FIGURE N	NO.
-----------------	-----

TITLE

2.1	Factors Contributed To Procedural Failure	7
2.2	The Field of Mechanics	9
2.3	Relationship between Stress and Strain	12
2.4	Stress and Strain Curve	12
2.5	Behaviour of Ductile and Brittle Materials	13
2.6	Types of Support	20
2.7	Support Reactions	21
2.8	Strut-and-Tie Model for Simple Span Beam	25
2.9	Strut-and-Tie Model for Deep Beam	25
2.10	Strut-and-Tie Model for a two-span continuous beam	26
2.11	Strut-and-Tie Model Design Procedure	27
2.12	Reinforced Concrete (RC) Section	31
2.13	Neutral Axis of RC Section	31
2.14	Behaviour of RC Section under Load	31
2.15	Plan view of lateral and diagonal bracing applied to	
	truss system	35
2.16	3D view of bottom chord lateral and diagonal bracing	
	details	36
2.17	Frequency distribution of load effect Q and resistance R	39
3.1	Flow Chart of Study	42
3.2	3D Model of Trusses Considered in Analysis (type of supp	oort
	is depending on the boundary condition considered)	45
3.3	Truss model with different support boundary condition	47

4.1	Roof Truss Layout Plan	50
4.2	Configuration of the Main Truss	51
4.3	Trusses at cross-bracing position	51
4.4	Collapsed Trusses Condition	53
4.5	Sequences of Failure	53
4.6	Critical Joint under Ultimate Gravity Load	60
4.7	Load Path for Effective Cross-bracing (assumption)	61
4.8	Load Path for Ineffective Cross-bracing	62
4.9	Internal Forces Distribution of Main Truss Member with	67
	Boundary Condition S1 – both end pinned support	
	(Ultimate Gravity Load)	
4.10	Internal Forces Distribution of Main Truss Member with	67
	Boundary Condition S2 – roller and pinned support	
	(Ultimate Gravity Load)	
4.11	Internal Forces Distribution of Main Truss Member with	69
	Boundary Condition M1 (Ultimate Gravity Load)	
4.12	Internal Forces Distribution of Main Truss Member with	69
	Boundary Condition M2 (Ultimate Gravity Load)	
5.1	First Floor Layout Plan of Collapsed Area	72
5.2	The collapsed area of the building	73
5.3	Mechanism of collapsed (first and second stage)	74
5.4	Mechanism of collapsed (final stage-fully collapsed)	74
6.1	General Guideline on the Use of Engineering Theories in	80
	Structural Failure Investigation	

LIST OF ABBREVIATIONS

В	—	Bernoulli or Beam region
D	_	Disturbed or Discontinuity region
FS	_	Factor of Safety
MS	_	Margin of Safety
R	_	Applied Stress/Resistance
STM	_	The Strut-and-Tie model
UTS	_	Ultimate Force/Stress
Q	_	Structural action/Load effect

LIST OF SYMBOLS

А	_	Area
Е	_	Young's Modulus
Fx, Fy, Fz	_	Force in x, y and z-direction
F	_	Force
lo	_	Initial length
l_1	_	Length after deformation
М	_	Moment
Mx, My, Mz	_	Moment in x, y and z-direction
Ν	_	Axial Force
Py	_	Design Strength
ΣF	_	Sum of all forces
ΣΜ	_	Sum of all moments
Т	_	Torsion
V	_	Shear force
σ	_	Stress
3	_	Strain
γ	-	load factor
Φ	_	resistance factor

LIST OF APPENDICES

APPENDIX NO.

TITLE

1	Photographs of Roof Truss Collapse (Case Study 1)	85
2	Photographs of Club House Collapse (Case Study 2)	91
3	Analysis result of the Effect of Boundary Condition to the	
	Structural Behaviour of Truss System	97

CHAPTER 1

INTRODUCTION

Forensic structural engineering is often referred as the engineering investigation and determination of the causes of structural failures of buildings, bridges and other constructed facilities. Structural failure does not have to be a 'catastrophic collapse'; it may be 'non-conformity with design expectation' or 'deficient performance'. Collapse is usually attributed to inadequate strength and/or stability; deficient performance, or so-called serviceability problems, is usually the result of abnormal deterioration, excessive deformation, and signs of distress. In short, structural failure may be characterized as the unacceptable difference between intended and actual structural performance.

1.1. Introduction

Failure of constructed facilities may carry a considerable price tag for structural replacement/rehabilitation and loss of business or life. Successfully diagnosing the probable cause of failure, assessing its consequences, and presenting the findings convincingly and in a mutually understandable manner are vital to the

process. Therefore, to attain such a reliable result, it is important to use suitable and correct methods of investigation of the failure.

In investigating structural failure due to deficiencies in structural system, the application of engineering theories is essential. These deficiencies are in terms of insufficient strength, stiffness and stability or combination of these parameters. Each parameter can be determined using stress analysis which concerned with the behaviour of bodies under load. The basic equilibrium analysis tool used to determine forces' acting on the body is the free body diagram. The concept is, if the diagram is not drawn correctly during design stage, the forces cannot be calculated accurately and the design may be unsafe. This will lead to failure of the structure. In addition, prediction of loading and determination of load path are also important in achieving safe design. Correct detailing and good inspection during construction also contribute to safe structure.

1.2. Significance of Study

Many cases of structure failure are investigated by applying various concepts in engineering theories. The approaches of investigation are usually different from one case to another. In order to study this, data compilation should be done and the lessons learned from failures of the structures should be reviewed. And for formulating a general guideline on the use of engineering theories in structural forensic investigation, the analysis of the engineering theories as well as the study of methodologies are necessary.

1.3. Objectives and Scope of Study

This study will focus on the investigation of structural failures due to deficiencies in strength, stiffness and stability caused by design and construction error. And the objectives of the study are:

- a) To compile data and review on lessons learned from failures of various civil engineering structures.
- b) To study the methodologies used in forensic engineering investigation.
- c) To analyse the applicability of various engineering theories (static analysis) in structural forensic investigation of failed structures.
- d) To provide a general guideline on the use of engineering theories in structural forensic investigation.

1.4. Case Study

A case study involving two forensic engineering investigation projects will be carried out to demonstrate the applicability of the engineering theories in assisting the failure analysis. Each case study will be analysed in terms of the following aspects;

- (a) the methodology for the investigation
- (b) the use of engineering mechanics in the failure analysis
- (c) the approach in developing failure hypothesis

The selected case study to be analysed are as follows;

- (a) Case Study 1 : The collapse of roof truss in School Project
- (b) Case Study 2 : The collapse of the Club House Project