EFFECT OF SILICA FUME TO THE STRENGTH AND PERMEABILITY OF HIGH PERFORMANCE GROUND GRANULATED BLASTFURNACE SLAG CONCRETE

AZLI SHAH BIN ALI BASHAH

UNIVERSITI TEKNOLOGI MALAYSIA

PSZ 19:16 (Pind. 1/97)

UNIVERSITI TEKNOLOGI MALAYSIA				
BORANG PENGESAHAN STATUS LAPORAN PROJEK				
		TIME TO THE STRENGTH AND DEDMEADILITY OF		
HIG	H PERFORMA	NCE GROUND GRANUI ATED BLASTEURNACE SLAG		
CON	ICRETE	HEE GROOND GRANULATED BEASTFORMACE SEAG		
		SESI PENGAJIAN: 2005/2006		
Saya	AZ	LI SHAH BIN ALI BASHAH .		
		(HURUF BESAR)		
mengaku men Perpustakaan U	ibenarkan lapo Jniversiti Tekno	ran projek (PSM /Sarjana/ Doktor Falsafah) * ini disimpan di ologi Malaysia dengan syarat-syarat kegunaan seperti berikut:		
 Laporan Pr Perpustaka pengaijan s 	rojek Sarjana ad an Universiti To sahaja,	alah hakmilik Universiti Teknologi Malaysia. eknologi Malaysia dibenarkan membuat salinan untuk tujuan		
 Perpustaka 	an dibenarkan	membuat salinan laporan projek sarjana ini sebagai bahan		
pertukaran	antara institusi	pengajian tinggi.		
4. **Sila tanda	kan (🖋)			
	SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)		
	TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi /badan di mana penyelidikan dijalankan.		
\checkmark	TIDAK TER	HAD Di sahkan oleh		
Alle Marine				
(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)				
Alamat Tetap:				
No 5 Jalan Perlak 5				
Sri Petaling 57	000	Assc. Prof. Dr. A. Aziz Saim		
Kuala Lumpur. Nama Penyelia				
Tarikh: ४/५	do	Tarikh: 8 5 06		
CATATAN * Poto	no vang tidak berke			

N: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
 U Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

"I hereby declare that I have read this project report and in my opinion this project report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil – Structure)"

	$A \cdot M$
Signature	:
Name of Supervisor	: ASSC. PROF. DR. A. AZIZ SAIM
Date	: 8 MAY 2006

EFFECT OF SILICA FUME TO THE STRENGTH AND PERMEABILITY OF HIGH PERFORMANCE GROUND GRANULATED BLASTFURNACE SLAG CONCRETE

AZLI SHAH BIN ALI BASHAH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > **MAY 2006**

I declare that this entitled "Effect Of Silica Fume To The Strength And Permeability Of High Performance Ground Granulated Blastfurnace Slag Concrete" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	AZLI SHAH BIN ALI BASHAH
Date	:	08 MAY 2006.

TO MY BELOVED PARENT, HAJI ALI BASHAH BIN YUSOFF AND HAJJAH NAEMAH ZAITUN BTE ABDUL HAMID

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Associate Professor Dr. A. Aziz Saim, for encouragement, guidance, and friendship. I am also very thankful to Ir. Rahmat Bin Abdul Rahman from *Persatuan Jurutera Islam Malaysia* and Ir. Y.C. Lee from Buildcon Concrete Sdn Bhd for their guidance, advices and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to University Teknologi Malaysia (UTM) for the laboratory works of my Master study. Librarians at UTM also deserve special thanks for their assistance in supplying the relevant literatures.

My sincere appreciation also extends to my friends Ir. Che Husni Ahmad (Consultant), Ir. Musfa Mohamed, Ir.. Abdul Kadir Ahyat(Consultant), En. Fairuz Hussin, En. Sharul Othman who have provided assistance at various occasions.

Lastly, I also reserve special thanks to my beloved wife and my sons Sidi Muhammad Yusoff, Sidi Zainul Abideen and Sidi Iqbal Shah for their commitment, encouragement and patient while preparing this thesis and the continued support.

ABSTRACT

A durable concrete is one that has the ability to withstand the damaging effects of the environment and of its service conditions without undue deterioration and excessive unforeseen maintenance over the design life of a structure. The used of high performance concrete is an alternative in producing high – strength concrete, durable and construction friendly. This paper study the effect of silica fume to the properties of high performance ground granulated blastfurnace slag concrete to reveal the potential outmost. It was found by compressive strength test, that high-strength concrete can be achieved. At the age of 28 days, concretes containing 5, 7.5, and 10% silica fume gave compressive strengths of 65.6, 64.6, and 67.1 Mpa, respectively. At aged 56 days concrete containing 10% of silica fume had the highest strength. However the concrete containing 5% of silica fume had low permeability thus may enhance the durability.

ABSTRAK.

Konkrit yang tahan lasak adalah kebolehan konkrit tersebut daripada mengalami kerosakan akibat dari kesan alam sekitar dan kemerosotan semasa perkhidmatan serta penyelenggaran yang kurang sepanjang hayat rekabentuk sesuatu struktur. Penggunaan konkrit berprestasi tinggi digunakan sebagai bahan alternatif untuk menghasilkan konkrit yang tahan lasak, berkekuatan tinggi dan memudahkan kerja pembinaan. Sehubungan itu kajian kesan bahan tambah silika peluwap terhadap sifat konkrit sangga relaubagas berbutir untuk mendedahkan potensi yang wujud. Dalam kajian ini melalui ujian mampatan, konkrit berkekuatan tinggi boleh dicapai. Pada konkrit berusia 28 hari yang mengandungi 5, 7.5 dan 10 % silika peluwap mencapai kekuatan mampatan 65.6, 64.6 dan 67.1 Mpa. Manakala konkrit pada usia 56 hari yang mengandungi 10% silika peluwap mencapai kekuatan yang paling Walaubagaimanapun konkrit yang mengandungi 5% silika peluwap tinggi. mempunyai ketelapan yang rendah dan secara tidak lansung ianya menambah nilai ketahanlasakan.

TABLE OF CONTENT

CHAPTER	TIT	LE		PAGE	
	Title Pa	age		i	
	Declaration Dedication Acknowledgement				
	Abstra	ct		v	
	Abstral	ĸ		vi	
	Table of	of Conter	ıt	vii	
	List of	Tables		Х	
	List of	Figure		xii	
	List of	Symbol	s	xiv	
1	INTRODUCTION				
	1.1	Forew	vord	1	
	1.2	Objec	tives	2	
	1.3	Scope	e of study	3	
2	LITE	RATUR	E REVIEW		
	2.1	Introd	luction	4	
		2.1.1	Definitions Of High Performance Concrete (HPC)	4	
	2.2	Devel	opment Of High Performance	5	
		Conci	rete		
	2.3	Mater	ials For High Performance	6	
		Conci	rete		
		2.3.1	Supplementary Cementing Materials	7	

	2.3.2	Silica Fume	8
	2.3.3	Ground Blastfurnace Slag Cements	10
2.4	Aggre	gates	15
2.5	Super	plastizer/High Range Water Reducers	16
	2.5.1	Superplasticizer Dosage	18
2.6	Water		19
2.7	Suppl	ementary Cementing Materials For	19
	Propo	sal Concrete Mix	
	2.7.1	Mix Selection For High Performance	19
		Concrete	

3 METHODOLOGY

3.1	Introduction	30
3.2	Experimental For The High Performance	30
	Concrete	
3.3	Material for testing	31
3.4	Water	31
3.5	Admixtures	32
3.6	Cube Compressive Strength	32
	3.6.1 Preparation of Concrete Cube	33
	Grade 60 with Free W/ C Ratio 0.32	
3.7	Permeability Testing	34

RESULT AND ANALYSIS

4.1	Introduction	47
4.2	The Results of Concrete Cubes Strength	47
	4.2.1 Analysis from the Results	48
	4.2.1.1 Analysis in respect to strength	48
4.3	The Results of Permeability Test (ISAT)	50

5 DESIGN RECOMMENDATION

5.1	Introduction		68
5.2	Discussion about the Concrete Cube		
	Streng	gth.	68
	5.2.1	1 day cube strength	69
	5.2.2	3 and 7 days cube strength	69
	5.2.3	28 and 56 days cube strength.	70
5.3	Perme	eability of Concrete Cube.	71

6 SUMMARY AND CONLUSION

6.1	Conclusion	75
6.2	Recommendation	76

REFERENCES	77
APPENDIX A	81

LIST OF TABLES

TAB	LE NO. TITLE	PAGE
2.1	Typical Composition	21
2.2	Some Major Projects That Used Blastfurnace Slag Cement In	
	Malaysia	22
2.3	Mix Proportions of Some High Performance Concrete	23
3.1	Mixture Proportions	36
3.2	Program for casting and testing of Concrete Cube	37
4.1	The Results Of Cubes Test	52
4.2	Comparison the compressive strength of Y2, Y3, Y4 for I day to YI	53
4.3	Comparison the compressive strength of Y2, Y3, Y4 for 3 days to Y	I 54
4.4	Comparison the compressive strength of Y2, Y3, Y4 for 7 days to Y	I 55
4.5	Comparison the compressive strength of Y2, Y3, Y4 for 28 days to	YI 56
4.6	Comparison the compressive strength of Y2, Y3, Y4 for 56 days to Y	YI 57
4.7	The Result Of Cube Strength Grade 60 Relate To JKR Specification	58
4.8	The Test Result Of Permeability ISAT For The Cube Y1	
	At Age 28 Days	60
4.9	The Test Result Of Permeability ISAT For The Cube Y2	
	At Age 28 Days	61
4.10	The Test Result Of Permeability ISAT For The Cube Y3	
	At Age 28 Days	62
4.11	The Test Result Of Permeability ISAT For The Cube Y4	
	At Age 28 Days	63
4.12	The Test Result Of Permeability ISAT For The Cube Y1	
	At Age 56 Days	64
4.13	The Test Result Of Permeability ISAT For The Cube Y2	
	At Age 56 Days	65
4.14	The Test Result Of Permeability ISAT For The Cube Y3	
	At Age 56 Days	66

LIST OF TABLES

TABI	LE NO. TITLE	PAGE
4.15	The Test Result Of Permeability ISAT	
	For The Cube Y4 At Age 56 Days	67
4.15	The result for Comparisons Relative To Permeability	
	And Compressive Strength For The Same Specimen	68
5.1	Reference For Permeability (ISAT) Test	74

LIST OF FIGURES.

TITLE

FIGURE NO

2.1	Factors which influences high performance concrete	24
2.2	Typical Strength Development	25
2.3	Higher Resistance to Chloride Diffussion	26
2.4	Higher resistance to sulphate attack	27
2.5	Protection Against Alkali-Silica Reaction	28
2.6	Temperature Profile Of Slagcem (contain 70 % ggbs& OPC)	29
3.1	Silica Fume(SF)	38
3.2	Ground Granulated Blast-Furnace Slag(GGBS)	38
3.3	Admixtures P322N And R1100H	39
3.4	Step for preparation the 150x150x150 concrete cube	40
3.5	Procedure In Preparation Of Concrete Cube	41
3.6	Compacting The Fresh Concrete	41
3.7	Measuring The Slump Of Fresh Concrete	42
3.8	Preparation of Concrete Cube for compressive testing	43
3.9	Cubes In The Tank For Curing Purpose	44
3.10	The procedures carried for the cubes test as in accordance to BS 1881:Part 116	45
3.11	Initial Surface Absorption Apparatus	46
3.12	Plastic Cap	46
4.1	Concrete cube strength in normal water for I day	53
4.2	Concrete cube strength in normal water for 3 days	54
4.3	Concrete cube strength in normal water for 7 days	55
4.4	Concrete cube strength in normal water for 28 days	56
4.5	Concrete cube strength in normal water for 56 days	57
4.6	Comparison Between The Cube Strength At 1,3,7,28,56 Days	59
4.7	The Graph Pattern For The Cube Y1 At Age 28 Days	60
4.8	The Graph Pattern For The Cube Y2 At Age 28 Days	61

PAGE

LIST OF FIGURES.

FIGURE	NO TITLE	PAGE
4.9	The Graph Pattern For The Cube Y3 At Age 28 Days	62
4.10	The Graph Pattern For The Cube Y4 At Age 28 Days	63
4.11	The Graph Pattern For The Cube Y1 At Age 56 Days	64
4.12	The Graph Pattern For The Cube Y2 At Age 56 Days	65
4.13	The Graph Pattern For The Cube Y3 At Age 56 Days	66
4.14	The Graph Pattern For The Cube Y4 At Age 56 Days	67

LIST OF SYMBOLS

BS	-	British Standard
HPC	-	High Performance Concrete
ACI	-	American Concrete Institute
w/c	-	water/cement
Mpa	-	Mega pascal
ISAT	-	Initial Surface Absorption Test
C-S-H	-	Calcium Silicate Hydrates
AASHTO	-	American Association of State Highway
		and Transportation Officials
MS	-	Malaysian Standard
OPC	-	Ordinary Portland Cement
C ₃ A	-	Tricalcium Aluminate
Psi	-	Pound/square inch
GGBS	-	Ground Blastfurnace Slag Cements
SF	-	Silica Fume
ASTM	-	American Society for Testing And Materials
S.O.	-	Superintendent Officer
UTM	-	University Technology Malaysia
JKR	-	Jabatan Kerja Raya
mm	-	millimeter
N/mm ²	-	newton per millimetres square
ml/m2/s	-	milliliters per square metre per second
SiO ₂	-	Silicon Dioxide
Ca(OH)	-	Calcium Hydroxide
FM	-	Figgs Method
m²/kg	-	metre square per kilogram
>	-	More than
<	-	Less than

CHAPTER 1

INTRODUCTION

1.1 Foreword

Most conventional concrete structures deteriorate rapidly and require costly repairs before their expected service life is reached. Four major types of environmental distress affect concrete structures. They are corrosion of the reinforcement, alkali-aggregate reactivity, freeze-thaw deterioration, and attack by sulfates (Ozyildirim, 1998). In each case, water or chemical solutions may penetrate the concrete and initiate or accelerate damages. By using high-performance concrete (HPC), durability and are enhanced strength, resulting in long-lasting and economical structure (Lerning and Ahmed, 1993).

American Concrete Institute(ACI) defined high performance concrete as: "High performance concrete (HPC) defined as concrete which meets special performance and uniformity requirements that cannot always be achieved routinely by using only conventional materials and normal mixing, placing and curing practices" The high performance concrete mixes designed for low permeability resist this infiltration of aggressive liquids and, therefore, are more durable. One important issue need to be addressed in the use of high performance concrete are the development of the mixes.

Low-permeability concretes are made with a low (0.45 and less) watercementations material ratio (w/cm). Pozzolanic material such as fly ash, silica fume, or slag be used as cementation materials. These modifications to the mixes results in higher compressive strengths than conventional concretes, above 41 Mpa (6,000 psi). The initial economic benefit arises from the ability to use fewer borepiles, colums, beams resulting in lower costs in materials, labour, transportation, and construction. The structural benefits include increased rigitidy because of the increased elastic modulus and increased concrete strength that raise the allowable design stresses (Lane, S.N, and Podolny, W. 1993). This project paper emphasis will be directed mainly to the applications of ground granulated blastfurnace slag and silica fume.

1.2 Objectives

- To develop the concrete mix and study the effect of silica fume between the matrix which consist of ground granulated blastfurnace slag with gradually added percentage f silica fume with minimum cube strength of 60 Mpa.
- ii) To develop concrete early age strength of more than 1 Mpa within 24 hour.
- To test concrete mix for compressive strength and preliminary study on permeability by Initial Surface Absorption Test (ISAT).

1.3 Scope of study

This study focuses on investigating the properties of the proposal concrete mix of high performance concrete. Among the properties investigated for such designed mixes are compressive strength, and permeability for durability while maintaining the high workability.