NON-LINEAR ANALYSIS OF A SYMMETRIC FLUSH END PLATE BOLTED BEAM-TO-COLUMN STEEL CONNECTION

by

CHE HUSNI HJ.AHMAD MA03464

Supervised by

Assoc.Prof.Dr. SHAHRIN MOHAMMAD

SYNOPSIS

Most connections that fasten beams to columns are deformable and exhibit a non-linear behaviour between conditions fully fixed and perfectly pinned. Connection flexibility affects both force distribution and deformation in beams and columns of the frame and must be accounted for in a structural analysis. This problem can be solved by conducting a non-linear analysis, which addresses both the geometric non-linearity and connection flexibility.

The linear elastic analysis assumes that the deformations are relatively small and the equilibrium equations can be formulated with respect to initial geometry.

To see the differences between the above approaches on moment capacity of the connection, a model of A Symmetric Flush End Plate Bolted Beam-to-Column connection model has been analysed using both approaches above. This model will be made similar to the model that had an experimental data for verification.

From non-linear computer analysis the moment capacity model is found to be 7.8 kNm compared to experimental data, 8.8 kNm.

The moment capacity resulted from linear analysis is found to be 19.5 kNm which is 2.5 time the non-linear analysis result or 2.216 above the experimental data.

The results of this study shows an agreement with previous researchers that the connection behaves in between pinned and fully rigid and possess some rotational stiffness.

TABLE OF CONTENTS

CHAPTER	T]	ITLE		PAGE
	A	CKNOWLE	iii	
	A	BSTRACT		iv
	A	BSTRAK		V
	TA	ABLE OF C	vi	
	LI	IST OF TAB	ix	
	LI	IST OF FIGU	X	
	LI	IST OF SYM	IBOLS	xii
CHAPTER 1	IN	NTRODUCT	TION	1
	1.	1 Genera	.1	1
	1.3	2 Probles	m Statements	1
	1	3 Object	ive Of This Research	2
	1.4	4 Scope	Of This Study	2
	1.:	5 Conten	ts Of Report	3
CHAPTER 2	Ll	ITERATUR	E REVIEW	4
	2.	1 Beam-	Γo-Column Connections	4
	2	2 Connec	Connection Classification	
		2.2.1	Moment Resistance	5
		2.2.3	Rotational Stiffness	6
		2.2.4	Ductility	6
	2	3 Type C	of Beam-To-Column Connections	7
		2.3.1	Double Web Angle Cleats	8
		2.3.2	Top And Seat Angles Cleats	8

			2.3.3	End Plate Connections	10	
			2.3.4	Tee-Stub Connections	12	
		2.4	Previo	ous Research	12	
		2.5	Concl	uding Remarks	17	
CHAPTER	3			M-TO-COLUMN CONNECTION LYSIS		
		3.1	Introd	luction	18	
		3.2	Non-Linear Structure		19	
			3.2.1	Boundary Non-Linearity	19	
			3.2.2	Geometric Non-Linearity	19	
			3.2.3	Material Non-Linearity	20	
		3.3	Non-Linear Analysis		21	
			3.3.1	Iterative Numerical Analysis Met	hod 22	
			3.3.2	Finite Element Method	24	
				3.3.2.1 Basic Finite Element		
				Equations	24	
				For Non-Linear Static		
				Structure	27	
		3.4	Linear	r Analysis Of Beam-To-Column		
			Connection		39	
CHAPTER	4	BEAN	М-ТО-(TRIC FLUSH END PLATE BOLT	ON	
		MOD	EL		43	
		4.1	Gener	al	43	
		4.2	Connection Configuration		44	
		4.3	4.3 Element Types		46	
			4.3.1	End Plate Element	47	
			4.3.2	Bolt Assembly Element	48	
			4.3.3	Beam Element	49	

			4.3.4 Column	Element	50	
			4.3.5 Joint Ele	ement	50	
		4.4	Non-Linear Ma	terial Data	52	
		4.5	Boundary Cond	litions	53	
		4.6	Load		53	
CHAPTER	5	ANALYSIS OF THE RESULTS AND DISCUSSION 56				
		5.1	General		56	
		5.2	Non-Linear Ana	alysis Results	57	
		5.3	Linear Analysis	Results	66	
CHAPTER	6	CONCLUSION AND RECOMMENDATION FOR				
	FUTU	URE STUDY		67		
		6.1	Conclusion		67	
		6.2	Recommendation	on For Future Research	67	
	REF				68	
		APPI	NDIX A		70-104	
		APPI	ENDIX B		105-115	