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ABSTRACT 

 

 

 

 

Reliable design of cast in-situ micropiles depends greatly on data pertaining 

to the properties of the rock mass, which include Rock Quality Designation (RQD) 

and modulus of deformation.  However, this data are difficult and costly to acquire 

for it requires direct measurement on the rock mass.  Consequently, the design of 

micropiles is often based on semi-empirical method.  This study is aimed at 

establishing relevant correlations between properties of rock mass and selected 

parameters for the design of micropile socketed in limestone.  Data used for the 

correlations are properties of limestone in Pandan Indah, Kuala Lumpur.  For natural 

material like rocks, anisotropy and discontinuity may lead to variations of its 

properties.  Consequently, it often requires a large number of field data to ensure 

reliability of correlations.  It also noted that the use RQD, to describe the 

discontinuous nature of limestone, is not that reliable.  Despite of these constraints, 

this study has shown the existence of some forms of correlations between design 

parameters of piles and characteristics of the rock mass.  Correlation exists between 

mobilised skin frictions (FS) and RQD.  Rock with lower RQD tends to induce a 

higher FS.  A good correlation exists between RQD and in-situ deformation modulus 

(Em) obtained from Pressuremeter test.  This implies that RQD value can be used for 

estimating Em of in-situ limestone.  Further verification shows that for rock with 

RQD < 25 %, the value of Em drops as much as 99 % (compared to intact modulus 

(Ei)).  Similar behavior is observed on the effect of RQD on the dynamic modulus 

and Poisson’s ratio.  With regard to the material properties of limestone, it is found 

that its Uniaxial Compression Strength (UCS) is about 26 times its Point-load index 

strength (IS), and Tensile strength (TS) is less than one-tenth of the UCS.  More field 

data is essential to improve the reliability of the established correlations. 
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ABSTRAK 

 

 

 

 

Kebolehgantungan rekabentuk cerucuk mikro tuang di-situ amat bergantung 
pada data mengenai sifat-sifat massa batuan di tapak, dan data ini merangkumi nilai 
RQD dan modulus perubahanbentuk.  Walaubagaimanapun data ini sukar dan mahal 
untuk diperolehi kerana ia memerlukan pengukuran secara terus ke atas batuan di 
tapak.  Oleh yang demikian rekabentuk cerujuk mikro selalunya berasaskan kepada 
kaedah separa empirikal.  Kajian ini bertujuan untuk mewujudkan beberapa korelasi 
di antara sifat-sifat massa batuan di tapak dan beberapa parameter penting bagi 
rekabentuk cerucuk mikro dalam batukapur.  Data yang digunakan bagi mewujudkan 
pertalian ini adalah sifat-sifat batukapur di Pandan Indah, Kuala Lumpur.  Bagi 
bahan semulajadi seperti batuan, ciri anisotropi dan ketakselarasan boleh 
menyebabkan wujudnya variasi dalam sifat sampel.  Oleh yang demikian bagi 
batuan, ianya memerlukan bilangan data di tapak yang lebih banyak bagi 
memastikan ketepatan korelasi yang diwujudkan.  Pemerhatian juga menunjukkan 
penggunaan nilai RQD bagi menggambarkan ketidakselaran jasad batuan adalah 
kurang sempurna. Di samping kekangan yang dihadapi, kajian ini telah berjaya 
membuktikan wujudnya beberapa bentuk pertalian di antara parameter rekabentuk 
cerucuk dan sifat-sifat massa batuan di tapak.  Wujud pertalian di antara geseran 
kulit yang digerakkan (FS) dan RQD.  Batuan yang mempunyai nilai RQD yang 
lebih rendah akan mengaruhkan nilai FS yang lebih tinggi.  Pertalian yang baik 
wujud di antara RQD dan modulus perubahanbentuk (Em) di tapak, yang diperolehi 
dari ujian Pressuremeter.  Ini membuktikan bahawa nilai RQD boleh digunakan bagi 
menganggarkan nilai Em bagi batukapor di lapangan.  Penelitian lanjut menunjukkan 
bagi batuan dengan nilai RQD < 25 %, nilai Em nya menurun hampir 99 % 
(dibandingkan dengan modulus tak terusik Ei).  Ciri-ciri yang hampir sama dilihat 
dari segi kesan RQD ke atas modulus dinamik dan nisbah Poisson.  Dari segi sifat 
bahan batukapur, didapati nilai UCS nya adalah 26 kali lebih besar dari IS, dan nilai 
TS pula kurang dari 1/10 nilai UCS. Bilangan data di tapak memainkan peranan yang 
penting dalam memastikan ketepatan pertalian yang telah diwujudkan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Most problems in rock engineering and construction involve either the 

strength of the in-situ rock mass or the compressibility of the rock mass.  For 

purposes of design it is necessary to represent, in equations of engineering mechanics 

the corresponding numerical values representing an appropriate in-situ property.  

Strength values and modulus values determined from laboratory testing of intact rock 

cores are recognized as not being directly applicable to the in-situ rock mass because 

of the scale effect. 

 

 

Presence of joints in rock mass has rendered it to be discontinuous in nature.  

Expressed in terms of Rock Quality Designation (RQD), this discontinuous to nature 

makes a rock mass to behave differently than intact rock samples used in laboratory 

tests.  Some forms of reduction on the properties must be applied as intact rock is 

usually stronger than a discontinuous rock.  In bored pile design, the mass properties 

of the rock mass are the essential input parameters.  The socket skin friction for 

instance, is estimated using the rock mass properties (e.g.  in-situ modulus and RQD) 

and the related pile and rock socket dimensions.  Surface roughness and strength of 
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the socket wall (main contributor to the skin friction) are difficult to quantify as they 

depend on rock strength, RQD and method of drilling.  It is due to the intricate 

interactions between the pile and the surrounding rock mass that the design of a 

bored pile is semi-empirical and relies greatly on established correlations.  Despite 

these interacting factors, certain components which dictate the pile behaviour can be 

quantified through laboratory and field tests.  The measured properties can be 

established in the form of correlations and used for predicting conditions of rock 

mass and consequently, to assess whether the design of bored pile in this rock is 

acceptable. 

 

 

Hence it is thought that if the corresponding values for the in-situ rock mass 

are known (e.g. safe bearing pressure and in-situ modulus) then, correlation between 

intact and mass properties could be recognized.  Some correlations exist between 

mobilised skin friction and RQD of the surrounding rock.  It is also found that joints 

(i.e. RQD) dictate the in-situ modulus of limestone, and consequently, correlation 

exists between RQD, intact and in-situ modulus (Barton et al., 1974; Waltham, 2002; 

Singh and Goel, 1999).  However, these in-situ properties must be measured in the 

field using relevant methods such as Pressuremeter tests which have been carried out 

at the project site.  Without any related and viable number of field data, it may be 

difficult to ascertain useful correlations, even though the laboratory data is abundant. 

 

 

 

 

1.2 Problem Statement 

 

 

Reliable design of a bored pile relies greatly on data pertaining to properties 

of rock mass surrounding the pile socket.  However, these properties such as skin 

friction, in-situ modulus are difficult and costly to acquire for it requires direct 

measurement on the in-situ rock.  When such data is lacking, the design is often 

based on semi-empirical method.  Unfortunately, this method may lead to some level 

of uncertainty on whether a pile is over- or under-design.  It is thought that there are 
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means to verify the reliability of the design approach.  For instance, if characteristics 

of the pile and properties of the in-situ rock can be correlated to certain level of 

reliability, then this correlation can be used to verify suitability of the design.  In 

addition, correlation between intact and mass properties of a rock can be used to 

predict the characteristics of its in-situ mass, and this information is vital for proper 

design of bored pile. 

 

 

 

 

1.3 Objectives of Study 

 

 

This study is aimed at establishing some correlations between properties of 

intact rock and in-situ rock, with specific focus on design of bored pile in limestone. 

In achieving the aim, following objectives are set forth: 

 

1) To identify and to establish relationships between selected intact (material) 

properties and discontinuous (mass) properties of limestone, with focus on 

laboratory properties like compressive strengths and compression (primary) 

wave velocity. 

2) To verify current approach in designing micro piles in limestone and criterion 

used in validating the geotechnical capacity of the pile (e.g. mobilised skin 

friction) and the  condition of rock (e.g. RQD).  

3) To identify and to establish correlations between designs criterion of pile and 

mass properties of in-situ rock, with focus on mobilised skin friction and 

RQD.  

4) To establish correlations between selected rock mass properties (in-situ 

modulus of deformation and Poisson’s ratio) and its discontinuous state 

(RQD), particularly those correlations relevant to design of micro pile in rock. 
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1.4 Methodology 

 

 

To achieve the desired goals, the following steps are adopted.  Compilation of 

related notes and reports on bored pile design, rock mass and rock material properties 

that are important for design approach.  Appropriate material properties of limestone 

through various laboratory tests and characterisation of intact rock samples was 

collected.  Field data (provided by Unit Geoteknik Jalan, Jabatan Kerja Raya 

Malaysia, and other parties and contractors involved in the site investigation work 

and field tests) which include site investigation report, static axial compression load 

tests and Pressuremeter test was compiled too.  And finally analysis of data to 

establish suitable correlations for verifying reliability of existing practice on micro 

pile design, and for predicting in-situ conditions of limestone rock mass was done. 

 

 

 

 

1.5 Scope of Study 

 

 

This study was carried out on Limestone bedrock in Pandan Indah, Kuala 

Lumpur.  Data used was related rock properties obtained from laboratory tests and 

field tests in that site.  Field data provided by Unit Geoteknik Jalan, Jabatan Kerja 

Raya Malaysia, and other parties and contractors involved in the site investigation 

work and field tests obtained from laboratory tests. These field performance tests 

were included trial shafts and in-situ assessment (Pressuremeter test) on limestone 

bedrock.  Weakening effects in expressing the discontinuous nature of limestone is 

due to presence of joints only, effect of weathering and cavities were not considered.  

The correlations established are used as guides for checking the performance and 

reliability of micro pile socketed in limestone.  Others correlations were proposed to 

relate typical material and mass properties of limestone. 

 




