PSZ 19:16 (Pind. 1/07)

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT				
Author's full name : MOHAMN	AD JOSHANI			
Date of birth · 19 IANIIA	RY 1981			
inte . <u>NONLINEA</u>	R FINITE ELEMENT ANALTSIS OF STEEL-CONCRETE			
COMPOSIT	E SLABS USING EXPLICIT DYNAMICS PROCEDURE			
Academic Session : 2009/2010	<u>- 2</u>			
I declare that this project report	is classified as:			
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*			
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*			
✓ OPEN ACCESS I agree that my thesis to be published as online open access (full text)				
I acknowledged that Universiti	I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:			
 The thesis is the property The Library of Universiti T 	v of Universiti Teknologi Malaysia. eknologi Malaysia has the right to make copies for the purpose			
3. The Library has the right	to make copies of the project report for academic exchange.			
	Certified by:			
SIGNATURE	SIGNATURE OF SUPERVISOR			
A12205237 (NEW IC NO. / PASSPORT	NO.) DR. REDZUAN ABDULLAH			
Date: 28 MARCH 2010	Date: 14 APRIL 2010			

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organisation with period and reasons for confidentiality or restriction.

Fakulti Kejuruteraan Awam Universiti Teknologi Malaysia

PENGESAHAN PENYEDIAAN SALINAN E-THESIS

Judul tesis: NONLINEAR FINITE ELEMENT ANALYSIS OF STEEL-CONCRETE COMPOSITE SLABS USING EXPLICIT DYNAMICS PROCEDURE

Ijazah	:	Master of Engineering (Civil – Structure)
Fakulti	:	Fakulti Kejuruteraan Awam
Sesi pengajian	:	2009/2010

(Tandatangan pelajar)	(Tandatangan penyelia sebagai saksi)
Alamat tetap:	
	Penyelia: DR. REDZUAN ABDULLAH
	Fakulti Kejuruteraan Awam Fakulti:
Tarikh: 28 MARCH 2010	Tarikh:14 APRIL 2010

Nota: Borang ini yang telah dilengkapi hendaklah dikemukakan kepada FKA bersama penyerahan CD.

"I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil – Structure)."

Signature	:
Name of Supervisor	: DR. REDZUAN ABDULLAH
Date	: <u>14 APRIL 2010</u>

NONLINEAR FINITE ELEMENT ANALYSIS OF STEEL-CONCRETE COMPOSITE SLABS USING EXPLICIT DYNAMICS PROCEDURE

MOHAMMAD JOSHANI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > APRIL 2010

I declare that this project report entitled "Nonlinear Finite Element Analysis of Steel-Concrete Composite Slabs using Explicit Dynamics Procedure" is the result of my own research except as cited in the references. This project has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	: _	
Name of Writer	: <u>N</u>	IOHAMMAD JOSHANI
Date	:	28 MARCH 2010

TO MY BELOVED MOTHER AND FATHER FOR THEIR ENDLESS LOVE AND SUPPORT

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincerest gratitude and appreciation to my supervisor, Dr. Redzuan Abdullah for his worthwhile guidance throughout this project. His wide knowledge and his expert advice during the period I have been carrying out this research, has been of great value for me. His invaluable comments, kind consideration, encouragement and supports have provided a good basis for the present thesis.

The author would like to express his deepest gratitude to his parents for their support and encouragement and for working so hard to give him a good education.

ABSTRACT

Composite slab construction using permanent cold-formed steel decking has become one of the most economical and industrialized forms of flooring systems in modern building structures. Structural performance of the composite slab is affected directly by the horizontal shear bond phenomenon at steel-concrete interface layer. This study utilizes 3D nonlinear finite element quasi-static analysis technique through explicit dynamics procedure to analyze the shear bond damage and fracture mechanics of the composite slabs. Cracking of the plain concrete over the corrugated steel deck has been modeled considering the mixed modes fracture mechanisms by means of concrete damaged plasticity model available in ABAQUS software version 6.9. The interface layer damage was simulated with cohesive elements presented in ABAQUS software considering three modes of fracture. Cohesive fractures properties such as fracture energy and initiation stress have been derived from horizontal shear stress versus end slip curves which were extracted from bending test of a series of small scale specimens. The proposed model is verified through comparison with experimental data which demonstrated that the results of the numerical analyses match with valid experimental results. Therefore these calibrated and validated models can predict the structural response of steelconcrete composite slabs. This will reduce the cost of empirical works which in accordance with present design specifications are mandatory in order to investigate the behavior and load bearing capacity of such structural systems.

ABSTRAK

Pembinaan papak rencam dengan menggunakan deck keluli terbentuk sejuk yang kekal merupakan salah satu jenis sistem papak yang paling ekonomi bagi struktur bangunan moden. Prestasi struktur bagi papak rencam dipengaruhi secara langsung oleh fenomena ikatan ricih mengufuk di antara muka keluli dan konkrit. Dalam kajian ini, analisis 'quasi-static' unsur terhingga 3D yang menggunakan prosedur 'explicit dynamics' telah dijalankan bagi menilai kerosakan ikatan ricih mengufuk dan mekanik retakan pada papak rencam. Retakan pada konkrit di atas dek keluli beralun telah dimodelkan dengan mengambil kira mekanik retakan dengan mod tergabung. Model kemusnahan plastic yang terdapat dalam perisian ABAQUS telah diguna dengan mengambil kira tiga mode retakan. Kemusnahan pada antara muka keluli dan konkrit telah dimodel dengan unsur 'cohesive'. Sifat retakan 'cohesive' seperti tenaga retakan dan tegasan pemula telah diterbitkan daripada geraf tegasan ricih mengufuk lawan gelangsaran hujung yang diambil daripada ujian lenturan bersaiz kecil. Model analisis yang dicadangkan dalam kajian ini disahkan kejituannya dengan mebuat perbandingan antara hasil analisis dengan data ujikaji. Hasilnya, model analisis ini boleh diguna untuk menilai gerak balas struktur papak rencam. Hal ini boleh mengurangkan kerja ujikaji yang dahulunya mesti dilakukan untuk menentukan kelakuan sebenar dan kebolehtanggungan beban system papak rencam.

TABLE OF CONTENTS

TITLE

CHAPTER

	DECI	LARATION	ii
	DEDI	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABST	FRACT	V
	ABST	ſRAK	vi
	TABI	LE OF CONTENTS	vii
	LIST	OF TABLES	Х
	LIST	OF FIGURES	xi
	LIST	OF APPENDICES	XX
	NOM	IENCLATURES	xxi
I	INTR	RODUCTION	1
	1.1	Introduction to Steel-Concrete Composite Slabs	1
	1.2	Problem Statement	8
	1.3	Aim of Study	10
	1.4	Objectives of Study	10
	1.5	Scopes of Study	11
	1.6	Organization and Outline of Thesis	12
П	LITE	RATURE REVIEW	13
	2.1	Introduction	13
	2.2	Fracture Mechanics and NFEA	14

PAGE

	2.2.1	Fracture Modes	16
	2.2.2	Composite Slab Behavior with Respect	17
		to Fracture Mechanics	
2.3	Simul	ation of Composite Slabs	19
2.4	Explic	cit Dynamics Procedure	21
2.5	Introd	luction to Cohesive Fracture Theory	22
	2.5.1	Concept of Cohesive Zone Model	24
	2.5.2	Inter-layer Damage Modeling using	26
		Cohesive Element	
	2.5.3	Cohesive Elements and Insertion	26
		Algorithms	
	2.5.4	Cohesive Element Formulation	28
	2.5.5	Traction Separation Law, TSL	30
	2.5.6	Interfacial Material Properties	31
	2.5.7	Interface Debonding Initiation and	32
]	Propagation	
	,	2.5.7.1 Constitutive Equations for	32
		Interface Damage	
	,	2.5.7.2 Mixed-mode Debonding	34
		Criterion	
	,	2.5.7.3 Damage Evolution Law	36
		Implementation	
2.6	Dama	ged Plasticity Model for Concrete	42
	2.6.1	Post-failure Stress-Strain Relation	46
	2.6.2	Fracture Energy Cracking Criterion	47
	2.6.3	Defining Compressive Behavior	48
MINT		LOCY	50
IVIĽI	πουο	LUGI	50

3.1	Introduction	50
3.2	Development of the FE model	51

III

	3.2.1	Models geometry and characterization	51
	3.2.2	Finite Element Mesh Generation	57
	3.2.3	Concrete Properties Definition	60
	3.2.4	Steel Properties Definition	64
	3.2.5	Interface Layer Properties Definition	65
	3.2.6	Boundary Conditions	68
RESU	JLTS A	ND DISCUSSION	70
4.1	Intro	duction	70
4.2	Case A	A (3VL16-4-7.5 composite Slab)	73
4.3	Case I	B (3VL16-8-7.5 composite Slab)	91
4.4	Case (C (3VL16-10-7.5 composite Slab)	107
4.5	Case I	D (3VL16-12-5 composite Slab)	117
4.6	Case I	E (3VL16-14-5 composite Slab)	128
CON	CLUSI	ONS & RECOMMENDATIONS	141
5.1	Concl	usions	141
5.2	Recon	nmendations	144
REFI	ERENC	ES	145
BIBL	IOGRA	АРНУ	150

IV

V

	159-	-
Appendices A - B	1.4	

nuices A - D	
	164

LIST OF TABLES

TABLE NO

3.4

4.1

model

equivalent uniform load

3.1	Geometry of the various models	52
3.2	Concrete mechanical and brittle cracking properties	62
	used in the FE model (Abdullah R., 2004)	
3.3	Steel properties (Abdullah R., 2004)	65

Interfacial layer properties used in the finite element

Coefficients for conversion of applied load to

TITLE

PAGE

66

73

LIST OF FIGURES

TITLE

PAGE

1.1	Configuration of a typical steel-concrete composite	2
	slab with trapezoidal decking.	
1.2	Illustration of an open rib type of composite slab.	2
1.3	Typical Trapezoidal and Re-entrant deck profiles.	4
1.4	Examples of trapezoidal deck profiles: (Left side) Up	5
	to 60 mm deep; (Right side) Greater than 60 mm	
	deep	
1.5	Typical forms of interlock in composite slabs	7
2.1	Visualization of general modes of fracture	17
2.2	Steel-concrete composite slab collapse modes.	18
2.3	Application of cohesive zone elements along bulk	23
	element boundaries	
2.4	Cohesive stresses are related to the crack opening	25
	width (w).	
2.5	Variation of cohesive stress with respect to the crack	26
	opening displacement in the process zone.	
2.6	Stress distribution and cohesive crack growth in	29
	mode-I opening for concrete.	
2.7	Forms of the TSL: a) cubic, b) constant, c)	30
	Exponential, d) Tri-linear	
2.8	Debonding damage model	31
2.9	Constitutive strain softening equations	32

2.10	(a) Visualization of the process zone at the crack tip,	34
	and definition of displacement jump δ and cohesive	
	tractions t. (b) Example of mode I cohesive law:	
	Rose-Smith-Ferrante universal binding law.	
2.11	Power law form of the shear retention model.	36
2.12	Mode mix measures based on traction	38
2.13	Linear damage evolution.	39
2.14	Illustration of mixed-mode response in cohesive	40
	elements.	
2.15	Fracture energy as a function of mode mix.	41
2.16	Tensile stress-elongation curves for quasi-brittle	43
	material.	
2.17	FPZ in Quasi-brittle (concrete).	43
2.18	Response of concrete to uniaxial load in tension (a)	44
	and compression (b).	
2.19	Illustration of the definition of the cracking strain	46
	$\frac{\tilde{\varepsilon}_t^{ck}}{t}$ used for the definition of tension stiffening data.	
2.20	Post-failure stress-displacement curve.	47
2.21	Fracture energy illustration.	48
2.22	Definition of the compressive inelastic (or crushing)	49
	strain $\frac{\tilde{\varepsilon}_{c}^{in}}{i}$ used for the definition of compression	
	hardening data.	
3.1	Geometry of beam corresponding to 3VL16-4-7.5	53
	composite slab.	
3.2	a) Isometric view of test setup b) Details at supports	54
3.3	Small Scale specimens before concrete casting	55
3.4	Pour stop at the end section of small scale beams	55
3.5	Configuration of the small scale test setup	56
3.6	Picture of a full-scale composite slab specimen	56
3.7	Schematic view of composite slab with trapezoidal	57
	decking (VULCRAFT)	
3.8	Mesh pattern for 3VL16-4-7.5 composite deck slab	57
3.9	Mesh pattern for 3VL16-8-7.5 composite deck slab	58

3.10	Mesh pattern for 3VL16-10-7.5 composite deck slab	58
3.11	Mesh pattern for 3VL16-12-5 composite deck slab	59
3.12	Mesh pattern for 3VL16-14-5 composite deck slab	59
3.13	Typical stress-strain relationship for concrete	61
3.14	Concrete behavior: (a) Tensile; (b) Compressive.	63
3.15	Convergence problem in long span composite slabs.	64
3.16	Typical stress-strain relationship for steel (bi-linear	65
	strain hardening)	
3.17	Horizontal shear bond versus end slip curves for	67
	various models	
3.18	Boundary conditions for 3VL16-4-7.5 composite	69
	deck slab	
3.19	Demonstration of interaction surfaces between rigid	69
	body, concrete and neoprene.	
4.1	Converting the point load in the model to uniform	71
	load (Udin, 2006)	
4.2	Support reaction force or loading force versus time	74
4.3	Mid-span deflection versus time	74
4.4	Support reaction force versus mid-span deflection	75
4.5	Comparison between experimental force-	75
	displacement curve and predicted structural response	
	with various smooth factors.	
4.6	Equivalent uniform load vs. mid-span deflection	76
	curve resulted from ABAQUS	
4.7	Kinetic energy vs. time curves for concrete, interface	77
	layer and the whole model.	
4.8	Internal energy vs. time curves for concrete, interface	78
	layer and the whole model	
4.9	Comparison of kinetic energy and total energy for the	78
	whole model	
4.10	Damage dissipation energy vs. time curves for	79
	constituent components and for the whole model.	
4.11	Determination of critical instances in damage	80

	evolution process of 3VL16-4-7.5 composite slab	
4.12	Damage status in the concrete and in the cohesive	82
	interface layer when the mid-span displacement is	
	equal to 2.3mm.	
4.13	Exhibition of crack development paths in the right	82
	side of the small scale beam tested at Virginia Tech	
	(Abdullah, 2004).	
4.14	Damage status in the concrete and in the cohesive	83
	interface layer when the mid-span displacement is	
	equal to 4.9 mm.	
4.15	Damage status in the concrete and in the cohesive	85
	interface layer when the mid-span displacement is	
	equal to 10 mm.	
4.16	Exhibition of major crack due to slip failure in the	85
	left side of the small scale beam tested at Virginia	
	Tech (Abdullah, 2004)	
4.17	Illustration of Major crack due to slip failure at the	86
	right side of the small scale specimen tested at	
	Virginia Tech (Abdullah, 2004)	
4.18	Depiction of longitudinal end slip resulted from	86
	analysis with ABAQUS	
4.19	Von Mises stress contour in whole of the specimen	87
	when time is equal to 0.03 second	
4.20	(Second picture) Contour of longitudinal shear bond	88
	stress along the length of the composite slab when the	
	damage status in the interface layer is exhibited with	
	the first upper picture.	
4.21	Longitudinal Shear stress vs. time for six random	89
	elements as shown in previous figure.	
4.22	Variation of end slip according to time for 3VL16-4-	89
	7.5 composite slab.	
4.23	Longitudinal Shear bond stress vs. end slip	90
4.24	Contour of displacement in direction 2 for 3VL16-4-	90

	7.5 composite slab with scale factor allocated equal	
	by 3.	
4.25	Picture of end slip for 3VL16-4-7.5 composite slab	91
	(Abdullah, 2004)	
4.26	Support reaction force or applied loading force versus	92
	time curve.	
4.27	Mid-span deflection versus time indicating loading	93
	rate.	
4.28	Support reaction force or applied loading force versus	93
	mid-span deflection.	
4.29	Comparison between experimental force-	94
	displacement curve and predicted structural response	
4.30	Kinetic energy vs. time curves for concrete, interface	94
	layer and the whole model.	
4.31	Internal energy vs. time curves for concrete, interface	95
	layer and the whole model.	
4.32	Comparison of kinetic energy and total energy for the	96
4.33	Damage dissipation energy vs. time curves for	96
	constituent components and for the whole model.	
4.34	Steps of Damage in Concrete and Interface according	98
	to equivalent uniform load graph.	
4.35	Damage status in the concrete and in the cohesive	99
	interface when the mid-span displacement is equal to	
	8.5 mm.	
4.36	Crack maps for specimen 3VL16-8-7.5 (Abdullah,	100
	2004)	
4.37	Exhibition of crack development paths in the left side	101
	of the small scale beam tested at Virginia Tech	
	(Abdullah, 2004)	
4.38	Damage status in the concrete and in the cohesive	102
	interface when the mid-span displacement is equal to	
	24 mm.	

4.39 Picture of longitudinal displacement of the model 103

	which shows that the red color region near the bottom	
	flange has slipped and displaced to left	
4.40	Von Mises stress contour in whole of the specimen at	104
	a certain time.	
4.41	(Second picture) Contour of longitudinal shear bond	105
	stress along the length of the composite slab.	
4.42	Longitudinal Shear stress vs. time for some random	105
	elements as shown in previous figure.	
4.43	Horizontal shear stress versus end slip	106
4.44	Picture of end slip of 3VL16-8-7.5 composite slab	106
4.45	Contour of displacement in direction 2 for steel	107
	decking of 3VL16-8-7.5 composite slab with scale	
	factor	
4.46	Buckling shape of steel decking at final stages of	107
	loading tested at Virginia Tech (Abdullah, 2004).	
4.47	Support reaction force versus time graph.	108
4.48	Mid-span deflection versus time indicating loading	109
	rate.	
4.49	Support reaction force versus mid-span deflection	109
	graph.	
4.50	Comparison between experimental force-	110
	displacement curve and predicted structural response	
4.51	Kinetic energy vs. time curves for concrete, interface	110
	layer and the whole model.	
4.52	Internal energy vs. time curves for concrete, interface	111
	layer and the whole model.	
4.53	Comparison of kinetic energy and total energy for the	112
	whole model.	
4.54	Damage dissipation energy vs. time curves for	112
	concrete, interface layer and the whole model.	
4.55	Steps of Damage in Concrete and Interface according	113
	to applied uniform load vs. mid-span deflection	
	graph.	

4.56	Damage status in the concrete and in the cohesive	114
	interface when the mid-span displacement is equal to	
	12 mm.	
4.57	Picture of longitudinal displacement of the model.	115
4.58	Von Mises stress contour in whole of the specimen at	115
	a certain time step.	
4.59	Longitudinal Shear stress vs. time for some random	116
	elements at interface layer.	
4.60	Longitudinal Shear bond stress vs. end slip curve.	116
4.61	Configuration of test set-up for 3VL16-12-5	117
	Composite Slab	
4.62	Mid-span deflection versus time indicating loading	117
	rate.	
4.63	Support reaction force versus mid-span deflection	118
	graph.	
4.64	Equivalent uniform load vs. mid-span deflection	118
	curve resulted from ABAQUS in comparison with	
	experimental tests.	
4.65	Kinetic energy vs. time curves for concrete, interface	119
	layer and the whole model.	
4.66	Internal energy vs. time curves for concrete, interface	120
	layer and the whole model.	
4.67	Comparison of kinetic energy and total energy for the	121
	whole model.	
4.68	Damage dissipation energy vs. time curves for	121
	concrete, interface layer and the whole model.	
4.69	Steps of Damage in Concrete and Interface according	122
	to equivalent uniform load graph.	
4.70	Damage status in the concrete and in the cohesive	123
	interface when the mid-span displacement is equal to	
	33 mm.	
4.71	Picture of crack development paths in the concrete	124
	body	

4.72	The cracking pattern matches with numerical analysis	124
	results done by ABAQUS software	
4.73	Picture of longitudinal displacement of the model	125
4.74	Von Mises stress contour in whole of the specimen at	126
	a certain time step.	
4.75	Depiction of some random selected elements for	126
	extraction of horizontal shear bond stress vs. time	
	graphs	
4.76	Longitudinal Shear stress vs. time for some random	127
	elements at interface layer.	
4.77	Horizontal shear bond stress vs. end slip curves	127
4.78	Configuration of test set-up for 3VL16-14-5	128
	Composite Slab	
4.79	Mid-span deflection versus time indicating loading	129
	rate.	
4.80	Support reaction force versus mid-span deflection	130
	graph.	
4.81	Comparison between experimental force-	130
	displacement curve and predicted structural response	
4.82	Equivalent uniform load vs. mid-span deflection	131
	curve resulted from ABAQUS in comparison with	
	experimental tests.	
4.83	Kinetic energy vs. time curves for concrete, interface	131
	layer and the whole model.	
4.84	Internal energy vs. time curves for concrete, interface	132
	layer and the whole model.	
4.85	Comparison of kinetic energy and total energy for the	133
	whole model.	
4.86	Damage dissipation energy vs. time curves for	133
	concrete, interface layer and the whole model.	
4.87	Steps of Damage in Concrete and Interface according	134
	to equivalent uniform load graph.	
4.88	Damage status in the concrete and in the cohesive	135

	interface when the mid-span displacement is equal to	
	40 mm.	
4.89	Cracks developed in the laboratorial test of 3VL16-	136
	14-5 Composite Slab	
4.90	Crack maps for specimen 3VL16-14-5 composite slab	136
4.91	Picture of longitudinal displacement of the model.	137
4.92	Von Mises stress contour in whole of the specimen	138
	when mid-span deflection is equal to 4cm.	
4.93	Depiction of some random selected elements for	138
	extraction of horizontal shear bond stress vs. time	
	graphs.	
4.94	Longitudinal Shear stress vs. time for some random	139
	elements at interface layer.	
4.95	Longitudinal Shear bond stress vs. end slip curve.	139
4.96	Picture of end slip for 3VL16-14-5 composite slab	140
	(Abdullah, 2004)	

xix

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Mixed mode fracture	159
В	Comparison between experimental results and	161
	numerical results with various smooth factors for	
	various composite slabs.	

NOMENCLATURES

b	Unit width of slab
d	Midspan displacement
d_d	Depth of profiled steel deck
ds	Steel deck depth
Е	Modulus of elasticity / Young's modulus
E ₁₁	Modulus of elasticity in longitudinl direction
E ₂₂	Modulus of elasticity in transverse direction (2-axis)
E ₃₃	Modulus of elasticity in transverse direction(3-axis)
Ec	Modulus of elasticity of concrete
Es	Modulus of elasticity of steel deck
f'c	Concrete compressive strength
F_y	Minimum yield strength of steel sheeting
F_u	Ultimate strength of steel sheeting
G ₁₂	Stiffness modulus in plane 1-2
G ₁₃	Stiffness modulus in plane 1-3
G ₂₃	Stiffness modulus in plane 2-3
h _c	Concrete cover depth above deck top flange
h_t	Total slab thickness
L	Total slab span
Ls	Shear span
М	Bending moment
Р	Point load
t	Steel sheeting thickness

t_c Concrete thickness

- U1 Movement in axis 1
- U2 Movement in axis 2
- U3 Movement in axis 3
- UR1 Rotation movement in axis 1
- UR2 Rotation movement in axis 2
- UR3 Rotation movement in axis 3
- w Uniform load
- υ Poisson's ratio
- δ Vertical deflection
- τ Shear bond stress