UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS /	UNDERGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name : LIEW SH	AN CHIN
Date of birth : 02 APRIL	
Title : CHARACTI	ERIZATION OF NATURAL FIBRE POLYMER
	ES FOR STRUCTURAL APPLICATION
Academic Session: 2008/2009	
I declare that this thesis is classi	ied as:
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
✓ OPEN ACCESS	I agree that my thesis to be published as online open access (full text)
I acknowledged that Universiti	eknologi Malaysia reserves the right as follows:
	of Universiti Teknologi Malaysia. eknologi Malaysia has the right to make copies for the purpose
	to make copies of the thesis for academic exchange.
	Certified by :
SIGNATURE	SIGNATURE OF SUPERVISOR
840402136181	ASSOC PROF. DR. JAMALUDIN BIN MOHAMAD YATIM
(NEW IC NO. /PASSPORT N	
Date : NOVEMBER 2008	Date : NOVEMBER 2008

NOTES : *

If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I declare that I have read through this project report and to my opinion this report is adequate in term of scope and quality for the purpose of awarding the degree of Master Engineering (Civil – Structure)"

Tandatangan	: _	
Penyelia	: _	PROF. MADYA DR. JAMALUDIN BIN MOHAMAD YATIM
Tarikh	:_	

PENCIRIAN SIFAT KOMPOSIT POLIMER BERGENTIAN SEMULA JADI UNTUK APPLIKASI STRUKTUR

LIEW SHAN CHIN

Laporan ini dikemukakan sebagai memenuhi sebahagian daripada syarat pengaugerahan Ijazah Sarjana Kejuruteraan Awam

Fakulti Kejuruteraan Awam Universiti Teknologi Malaysia

NOVEMBER 2008

CHARACTERIZATION OF NATURAL FIBRE POLYMER COMPOSITES FOR STRUCTURAL APPLICATION

LIEW SHAN CHIN

A report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > **NOVEMBER 2008**

"I declare that this report entitled "Characterization of natural fibre polymer composites for structural application" is the result of my own research except the quotations and summaries that I have stated the sources clearly."

Signature	:	
Aunthor Name	:	LIEW SHAN CHIN
Date	:	24 NOVEMBER 2008

Specially dedicated to my beloved mother Wendy Lee Wai Yong, beloved father Liew Moon Fah, sister, brother, lecturers, and friends.

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my supervisors, Assoc. Prof. Dr. Jamaludin Bin Mohamad Yatim (Faculty of Civil Engineering) and for his patience, guidance, support and time which have contributed thoroughly in this study. I would like to express sincere thanks to my co-supervisor, Assoc. Prof. Dr. Wan Aizan (Faculty of Chemical and Natural Resources Engineering) for her guidance and support to ensure this study successfully done.

I would like to thanks the staffs of Structures and Materials Laboratory, Faculty of Civil Engineering, Materials Laboratory, Faculty of Mechanical Engineering and Bio Polymer Laboratory, Faculty of Chemical and Natural Resources Engineering, for their assistance in the experimental works.

Lastly, I would like to express my appreciation to those who have given me either direct or indirect assistance in this project.

ABSTRACT

Oil palm fibre which is relatively low cost and abundantly available has the potential as polymer reinforcement in structural applications. This study initially investigated the tensile behaviour of single oil palm fibre and physical properties like diameter, moisture content, moisture absorption and density. Then, the tensile behaviour of natural fibre reinforced polymer composites as a function of fibre volume ratio, fibre length and fibre surface modification was investigated. Lastly, flexural behaviour of reinforced concrete beam strengthened with unidirectional oil palm fibre composite was tested and was compared with reinforced concrete beam strengthened with woven glass fibre composite and ordinary reinforced concrete beam. Oil palm fibre is light but high moisture content, high moisture absorption and large variance of cross section area. The fibre tensile properties are relatively low compare to the literature which may due to degradation problems. The stiffness of the composite is significantly improved when the fibre volume ratio increased. At 10% of fibre volume ratio, the modulus of elasticity is increased up to 150 % compare to neat resin. Higher aspect ratio yield higher tensile strength and modulus of elasticity of the composite. The effect of alkali treatment increases 10% of the tensile strength of the fibres. Oil palm fibre composite could be used as strengthening material for reinforced concrete beam by increasing the flexural strength and stiffness of the reinforced concrete beam while maintaining the ductility of the beams.

ABSTRAK

Gentian minyak kelapa sawit yang kos rendah dan berlambak-lambak di negara ini merupakan bahan gentian yang bepontensi digunakan dalam aplikasi struktur. Kajian ini mengkaji sifat ketengangan gentian minyak kelapa sawit dan sifat fizikal gentian minyak kelapa sawit seperti diameter, kandungan kelembapan, sifat penyerapan kelembapan dan ketumpatan. Kemudian, sifat ketegangan composit polimer bergentian semula jadi dikaji. Antara parameter yang telah dikaji terhadap composit ialah kadaran isipadu gentian, panjang gentian dan modikasi permukaan gentian. Akhirnya, sifat lenturan rasuk konkrit bertulang besi yang diperkuatkan dengan komposit dikaji. Komposit yang terlibat dalam kajian lenturan rasuk termasuk bahan komposit polimer bertulang gentian sintesis - gentian kaca, dan bahan komposit polimer bertulang gentian semula jadi – gentian kelapa sawit. Daripada kajian ini, gentian minyak kelapa sawit adalah bahan yang ringan tetapi kandungan kelembapan yang tinggi, penyerapan kelembapan yang tinggi dan diameter yang perbezaan besar. Sifat ketegangan gentian kelapa sawit adalah rendah berbanding dengan gentian lain seperti gentian kaca mungkin disebabkan masalah pereputan. Keanjalan komposit bergentian kelapa sawit gentian diperbaiki apabila kadaran isipadu gentian bertambah. Gentian kelapa sawit yang lebih panjang menghasilkan composit yang lebih baik dalam sifat ketegangan komposit. Modifikasi permukaan gentian kelapa sawit dengan menggunakan rawatan akali hanya menambahkan daya ketegangan komposit. Komposit polimer bergentian kelapa sawit boleh digunakan bahan penguatan untuk rasuk konkrit bertulang besi dengan menambahkan kekuatan kelenturan dan kekerasan rasuk konkrit bertulang besi pada masa yang sama mengekalkan kemuluran rasuk.

LIST OF CONTENTS

CHAPTER	SUBJECT	PAGE No.
	DECLARATION	iv
	DEDICATION	V
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRACK	viii
	LIST OF CONTENTS	ix
	LIST OF TABLES	xiv
	LIST OF FIGURES	xvi
	LIST OF EQUATIONS	xxi
	LIST OF APPENDICES	xxii

CHAPTER 1	INTRODUCTION			1
	1.1	General		1
	1.2	Backgrou	nd and Rationale of the Project	2
	1.3	Overall Objectives and Scope of the Study		5
		1.3.1	Objectives of the Study	5
		1.3.2	Scope of the Study	5
	1.4	Summary		7

CHAPTER 2	LITERATURE REVIEW				
	2.1	Genera	1		8
	2.2	Natural Fibre Reinforced Polymer Composition			8
		2.2.1	Natural l	Fibres	8
			2.2.1.1	Characteristic of Natural	13
				Fibres	
			2.2.1.2	Oil Palm Fibres	14

			2.2.1.3 Pineapple Leaf Fibres	15
		2.2.2	Thermosetting Polyester Resin	16
			2.2.2.1 Characteristic	of 17
			Unsaturated Polyester	
			2.2.2.2 Properties of Polye Resin	ester 19
	2.3	Propertie	s of Natural Fibre Reinforced Poly	mer 20
		2.3.1	Tensile Properties	21
		2.3.2	Thermal Properties	27
		2.3.3	Moisture Content	28
		2.3.4	Biodegradation	and 28
			Photodegradation	
	2.4	Treatmer	t on Natural Fibres	29
	2.5	Method	of Fabrications and Cur	rrent 30
		Applicat	ons	
	2.6	Conclusi	ons	32
CHAPTER 3	EXPE	RIMENTAL	PROGRAMME	33
	3.1	General		33
	3.2	Outline of	f the Test Programme	33
	3.3	Property	Test on Natural Fibres	35
		3.3.1	Fibres Extraction	35
			3.3.1.1 Oil Palm Fibres	35
			3.3.1.2 Pineapple Leaf Fibres	36
		3.3.2	Physical Test	39
			3.3.2.1 Fibre Length	39
			3.3.2.2 Fibre Diameter	40
			3.3.2.3 Moisture Content	and 41
			Moisture Absorption	
			3.3.2.4 Fibre Density	42
		3.3.3	Mechanical Test	43
			Single Fibre Tensile Test	
	3.4	Property	Test on Natural Fibre Reinfor	rced 45
		Composi	e	
		3.4.1	Material Preparation	45
			3.4.1.1 Fibres	45

			3.4.1.2	Resin	46
			3.4.1.3	Closed Mould -Hand Lay	47
				System	
		3.4.2	Fabricatio	on of Composite and Resin	50
		3.4.3	Tensile T	Čest	52
	3.5	Property	Test on	Strengthening Reinforced	57
		Concrete	Test		
		3.5.1	Specimer	n Preparation	58
			3.5.1.1	Reinforced Concrete	58
				Beam	
			3.5.1.2	Reinforced Concrete	62
				Beam with Natural Fibre	
				Composite Plate and	
				Glass Fibre Composite	
				Plate	
		3.5.2	Four Poir	nt Bending Test Setup	63
	3.6	Conclusio	ons		67
CHAPTER 4	RESULTS	5			68
	4.1	General			68
	4.1 4.2		Test on Na	tural Fibres	68 68
			Test on Na Physical		
		Property			68
		Property	Physical 4.2.1.1 4.2.1.2	Test Fibre Length Fibre Diameter	68 69 69 71
		Property	Physical 4.2.1.1 4.2.1.2	Test Fibre Length Fibre Diameter Moisture Content and	68 69 69
		Property	Physical 4.2.1.1 4.2.1.2 4.2.1.3	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption	68 69 69 71 73
		Property 4.2.1	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density	68 69 69 71 73 75
	4.2	Property 7 4.2.1 4.2.2	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre	 68 69 69 71 73 75 76
		Property 74.2.14.2.2Tensile Province Pro	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin	 68 69 69 71 73 75 76 80
	4.2	Property 7 4.2.1 4.2.2	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P roperties of Tensile F	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin Properties of Natural Fibre	 68 69 69 71 73 75 76
	4.2	Property 74.2.14.2.2Tensile Province Pro	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P roperties of Tensile F Reinforce	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin Properties of Natural Fibre ed Composite	 68 69 69 71 73 75 76 80 81
	4.2	Property 74.2.14.2.2Tensile Province Pro	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P roperties of Tensile H Reinforce 4.3.1.1	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin Properties of Natural Fibre ed Composite Fibre Volume Fraction	 68 69 69 71 73 75 76 80 81 81
	4.2	Property 74.2.14.2.2Tensile Province Pro	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P roperties of Tensile F Reinforce 4.3.1.1 4.3.1.2	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin Properties of Natural Fibre ed Composite Fibre Volume Fraction Fibre Length	 68 69 69 71 73 75 76 80 81 81 86
	4.2	Property 4.2.1 4.2.2 Tensile Pr 4.3.1	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P roperties of Tensile F Reinforce 4.3.1.1 4.3.1.2 4.3.1.3	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin Properties of Natural Fibre ed Composite Fibre Volume Fraction Fibre Length Fibre Treatment	 68 69 69 71 73 75 76 80 81 81 86 89
	4.2	Property 74.2.14.2.2Tensile Province Pro	Physical 4 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P roperties of Tensile F Reinforce 4.3.1.1 4.3.1.2 4.3.1.3 Tensile F	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin Properties of Natural Fibre ed Composite Fibre Volume Fraction Fibre Length Fibre Treatment Properties of Glass Fibre	 68 69 69 71 73 75 76 80 81 81 86
	4.2	Property 7 4.2.1 4.2.2 Tensile Pr 4.3.1 4.3.2	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P roperties of Tensile H Reinforce 4.3.1.1 4.3.1.2 4.3.1.3 Tensile H Composit	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin Properties of Natural Fibre ed Composite Fibre Volume Fraction Fibre Length Fibre Treatment Properties of Glass Fibre te	 68 69 69 71 73 75 76 80 81 81 86 89 92
	4.2	Property 7 4.2.1 4.2.2 Tensile Pr 4.3.1 4.3.2 4.3.2	Physical 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 Tensile P roperties of Tensile F Reinforce 4.3.1.1 4.3.1.2 4.3.1.3 Tensile F Composit Tensile P	Test Fibre Length Fibre Diameter Moisture Content and Moisture Absorption Fibre Density roperties of Oil Palm Fibre f Composite and Resin Properties of Natural Fibre ed Composite Fibre Volume Fraction Fibre Length Fibre Treatment Properties of Glass Fibre	 68 69 69 71 73 75 76 80 81 81 86 89

		Concrete	Beam	
		4.4.1	Compressive Strength of Concrete	95
		4.4.2	Control Specimens	96
		4.4.3	Reinforced Concrete Beam	99
			strengthened with Glass Fibre	
			Composite Plate	
		4.4.4	Reinforced Concrete Beam	104
			strengthened with Oil Palm Fibre	
			Composite Plate	
	4.5	Conclusi	ons	107
CHAPTER 5	ANAL	YSIS AND D	ISCUSSION	109
	5.1	General		109
	5.2	Characte	erization of Natural Fibres	109
		5.2.1	Physical Properties	110
			5.2.1.1 Fibre Length	110
			5.2.1.2 Fibre Diameter	110
			5.2.1.3 Moisture Content and	111
			Moisture Absorption	
			5.2.1.4 Fibre Density	112
		5.2.2	Tensile Properties of Oil Palm Fibre	113
	5.3	Characte	erization of Tensile Properties of	115
		Natural	Fibre Reinforced Composite	
		5.3.1	Effect of Oil Palm Fibre in	115
			Reinforcing Polymer	
		5.3.2	Effect of Fibre Volume Fraction in	117
			Composite	
		5.3.3	Effect of Fibre Length in Composite	121
		5.3.4	Effect of Fibre Treatment in	122
			Composite	
	5.4	Characte	erization of Flexural Behaviour of	124
		Strength	ening Reinforced Concrete Beam	
		5.4.1	Deflection Behaviour and Ultimate	124
			Capacity of the Beams	
		5.4.2	Comparison between Theoretical	124
			Predictions and Experimental	
			Results	
	5.5	Conclus	ions	126

CHAPTER 6	CONCLUSION AND RECOMMENDATION			
	6.1	General	128	
	6.2	Physical and Tensile Properties of Natural Fibre	128	
	6.3	Tensile Properties of Oil Palm Fibre Reinforced	129	
		Composite		
	6.4	Flexural Properties of Reinforced Concrete	130	
		Beam Strengthened with Oil		
	6.5	Recommendations for Future Studies	131	
REFERENCES			132	
APPENDICES			134	

LIST OF TABLES

TABLE NO. TITLE

PAGE

2.1	The density and the cost of various types of fibres in	10
	market	
2.2	Chemical composition of various types of natural	11
	fibres	
2.3	Summarizes the basic properties of various natural	14
	fibres	
2.4	Representative properties of different types of resins	17
2.5	Basic mechanical properties of Unsaturated Polyester	19
2.6	Experimental Stress Strain Data for a variety of	21
	Glass/Epoxy Systems	
2.7	The highest tensile strength that has been tested based	23
	on the types of natural fibres	
2.8	The interfacial shear strength of natural fibres and	25
	matrix	
3.1	Basic requirement suggested by ASTM 3039 and BS	55
	EN ISO 527-5 for unidirectional tensile properties	
3.2	Proportion of Concrete Mixture of Grade 25	58
4.1	Number of Oil Palm Fiber Length	70
4.2	The diameter of oil palm fibre	73
4.3	Moisture Content of Pineapple Leaf Fibres and Oil	74
	Palm Fibres	
4.4	Moisture Absorption of Pineapple Leaf Fibres and Oil	75
	Palm Fibres	

4.5	Fibre density of Pineapple Leaf Fibres, Oil Palm	76
	Fibres and Glass Fibres	
4.6	Tensile Properties of oil palm fibre in various gauge	78
	length according to ASTM D 3379	
4.7	Tensile properties of different oil palm fibre volume	81
	fraction composite	
4.8	Tensile properties of different oil palm fibre length	85
	composite	
4.9	Tensile properties of fibre composite as a function of	88
	alkali treatment hours	
4.10	Tensile properties of woven glass fibre composite	91
4.11	Tensile properties of polyester resin	93
4.12	Compressive strength of concrete	94
5.1	Diameter of Oil Palm Fibre (Empty Fruit Brunch)	110
5.2	Moisture content of various fibres	111
5.3	Density of different type of natural fibres	112
5.4	Density of different type of natural fibres	113
5.5	First crack load and ultimate load of various beams	123
5.6	Theoretical and Experimental results of ultimate load	126
	in various beams	

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

1.1	The tensile strength of natural properties of natural	4
	fibre composites and other civil engineering materials	
2.1	Natural fibres based on their group	9
2.2	Hydroxl groups in cellulose monomer	12
2.3	Schematic representation of a fibre cell and the micro	13
	fibrils	
2.4	Oil Palm Empty Fruit Branch	15
2.5	Scanning electron micrographs of oil pam fibres	26
2.6	TGA and DTA curves of Alkali treated Oil Palm	26
	Empty Fruit Brunch Fibres	
2.7	TGA and DTA curves of Oil Palm Empty Fruit Brunch	27
	Fibres	
2.8	Interior panelling in new Mercedez Benz automobiles	31
2.9	Fibresit site office	31
3.1	Empty Fruit Brunch of oil palm fibres	35
3.2	Oil palm fibres is obtained in a rectangular bales. The	36
	Fibres are curly, different direction and entangled	
3.3	Processed oil palm fibres after combing process	36
3.4	Process flow of pineapple leaf fibres in laboratory	37
3.5	Pineapple Leaf fibres before cut	37
3.6	Smooth roller milling machine	38
3.7	Schematic of single fibre test specimen	44
3.8	Setting time of polyester versus percentage of catalyst	47

xvii

amount

	amount	
3.9	Open steel mould is made and the product of open-	48
	mould system	
3.10	A close-mould system and the product of close-mould	49
	natural fibre composite	
3.11	Plan view and side view of the close mould system	49
3.12	The sequence of laying the fibres before composite is	51
	fabricated	
3.13	Straight-sided specimen	52
3.14	A strain gage with base length L measures an average	53
	physical property related to the stress, σ_A	
3.15	Straight sided specimen size and configuration	54
3.16	Straight sided specimen size of oil palm fibre	54
	composite	
3.17	Extensometer with 50 mm gage length	56
3.18	DARTEC Universal Testing Machine, with a capacity	57
	of 250kN and hydraulic grips	
3.19	Arrangement of reinforcement bar for the beam	59
3.20	Shear link and anchorage bar	59
3.21	Wooden formwork for reinforced concrete beam	60
3.22	Longitudinal and cross section of the reinforced beam	61
3.23	Steel mould is made to fabricate composite plate	62
3.24	The bottom surface of the concrete beam is roughened	63
	to provide better bonding	
3.25	Four strain gauge are installed at top of the beam and	64
	side beam	
3.26	Dummy plates PIF-11 are used when mounting the	65
	PIF-21 jig to the composite plate	
3.27	Two PI-2-50 types of TML displacement transducers	65
	are installed at the middle of composite plate	
3.28	Setup and Position of the instrumentions	66
3.29	Flexural test on control beam	66
4.1	Oil Palm Fibres and Pineapple Leaf Fibres after Oven-	69

	•	1
1 1	r16	b d
$\boldsymbol{\nu}$	110	JU.

	Dried	
4.2	Frequency of Oil Palm Fibre Length	71
4.3	Oil palm fibre length distribution curve	71
4.4	The image of oil palm fibre under 100x magnification	72
4.5	Defects of Oil Palm fibre, (a) branch (b) split (c) knob	72
4.6	Distribution of oil palm fibres diameter	73
4.7	Moisture absorption versus time of oil palm fibres and	75
	pineapple leaf fibres	
4.8	Typical load versus elongation of single fibre tensile	76
	test of oil palm fibre	
4.9	Relationships of apparent compliance versus fibre	77
	gauge length from single fibre testing test	
4.10	Typical stress versus strain of single fibre tensile test	79
	of oil palm fibre	
4.11	The appearance of different fibre volume fraction	80
	composite	
4.12	Bar chart of ultimate tensile strength versus fibre	82
	volume ratio	
4.13	Bar chart of strain at break versus fibre volume ratio	82
4.14	Bar chart of modulus of elasticity versus fibre volume	83
	ratio	
4.15	Stress strain curve of different volume fraction of oil	84
	palm fibre composite	
4.16	Typical failure pattern of unidirectional composites	84
	under longitudinal tension, a) fracture near tab, b) and	
	c) fracture in gage length	
4.17	Bar chart of ultimate tensile strength versus fibre	85
	length	
4.18	Bar chart of strain at break versus fibre length	86
4.19	Bar chart of modulus of elasticity versus fibre length	87
4.20	Stress strain curve of different fibre length of oil palm	87
	fibre composite	
4.21	Bar chart of ultimate tensile strength versus fibre	89

	length in alkali treatment study	
4.22	Bar chart of strain at break versus fibre length in alkali	89
	treatment study	
4.23	Bar chart of modulus of elasticity versus fibre length	90
	in alkali treatment study	
4.24	Stress strain curve of oil palm fibre composite as a	90
	function of treatment time	
4.25	Typical stress strain curve of woven glass fibre	93
	reinforced polymer composite	
4.26	Typical stress strain curve of polyester resin	93
4.27	Longitudinal cracks were found on tested concrete	94
	cubes at 28 days	
4.28	Load-displacement curve of control beam	95
4.29	Large flexural crack was found under the applied load	96
	after the control beam failed	
4.30	Flexural cracks were observed in control beam	96
4.31	Longitudinal strain in the mid span cross section	97
	control beam under various applied load	
4.32	Load versus compressive strain of the concrete beam	98
	at the top surface	
4.33	Load-displacement curve of RC-GFRP beam	99
4.34	Initial crack was found at 12kN of applied load in	99
	GFRP-RC beam	
4.35	Flexural cracks were observed in GFRP-RC beam	100
4.36	GFRP plate end interfacial debonding was observed	100
	after ultimate load	
4.37	Longitudinal strain in the mid span cross section RC-	101
	GFRP beam under various applied load	
4.38	Load versus compressive strain of GFRP-RC concrete	102
	beam at the top surface	
4.39	Load versus tensile strain of GFRP composite plate at	102
	the bottom of the beam	
4.40	Load-displacement curve of RC-OPFRP beam	104

4.41	Fracture of oil palm fibre reinforced polymer	104
	composite at ultimate tensile strength	
4.42	Flexural cracks were observed in OPFRP-RC beam	105
4.43	Longitudinal strain in the mid span cross section RC-	105
	OPFRP beam under various applied load	
4.44	Load versus tensile strain of GFRP composite plate at	106
	the bottom of the beam	
5.1	Lumen was found in the cross section of oil palm fibre	110
5.2	a)Stress-strain curve of treated and untreated oil palm	114
	fibre reported by M.S.Sreekala and b) a)Stress-strain	
	curve of untreated oil palm fibre reported by Liew	
5.3	Stress-strain curve of oil palm fibre, oil palm fibre	115
	reinforced polymer composite and resin	
5.4	Sequence of micromechanics failure in composite	116
5.5	The effect of tensile properties of oil palm fibre	117
	reinforced polymer composite as a function of fibre	
	volume ratio	
5.6	Comparison of ultimate tensile strength of composite	119
	of experimental results and theoretical model as a	
	function of fibre volume ratio	
5.7	Comparison of ultimate tensile strength of composite	119
	of experimental results and theoretical model as a	
	function of fibre volume ratio	
5.8	The effect of tensile properties of oil palm fibre	120
	reinforced polymer composite as a function of fibre	
	length	
5.9	Stresses in a discontinuous fibre	121
5.10	The effect of tensile properties of oil palm fibre	122
	reinforced polymer composite as a function of	
	treatment hour	
5.11	Load versus displacement of the beams	124

LIST OF EQUATIONS

EQUATION	TITLE	PAGE
NO.		

E/1	Average longitudinal stress	118
E/2	Average longitudinal modulus	118
E/3	Alkaline treatment reactions	122

LIST OF APPENDICES

APP. NO.	TITLE					PAGE
A/1	Calculation Capacity	of	Strengthening	Beam	OPFRP-RC	125

CHAPTER 1

INTRODUCTION

1.1 General

Natural fibres can be defined as slender threads created by nature. Comparatively, synthetic fibres are created by humans from minerals. Synthetic fibres are extensively used in advanced composites like airplanes, sports gadgets, automotive and infrastructure due to high strength and high performance when combine with plastic material. However, synthetic fibres like glass fibre are usually high cost compare to conventional materials like wood, steel and concrete which limit the use of synthetic fibres in advance applications only. Unlike the synthetic fibres, natural fibres are cheap and available in large quantity and yet environmental friendlyⁱ.

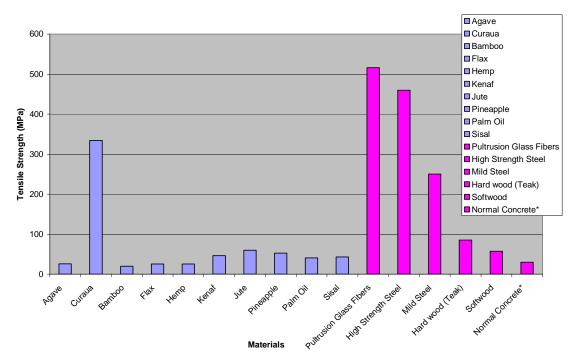
In the past, natural fibres are used in early human civilization in fabric applications. High strength natural fibres like jute, cotton, silk and kenaf are used extensively and directly in one-dimensional products like lines, ropes and cloths. Others natural fibres like oil palm fibres, banana leaf fibres, and rice stalks fibres are residual agriculture product. They are usually disposed into land fill or disposed by open burning. Environmental issues arise when these materials are in large quantities. Landfill method becomes not economical whilst open burning results air pollution and global warming.

Until recent decade, there is an increasing interest on natural fibres reinforced polymer. The potential of natural fibres replacing synthetic fibres in composite is possibleⁱⁱ. In general, natural fibres offer high specific properties, low cost, non abrasive, readily available and environmental friendly where no synthetic fibres can surpass these advantages. These advantages attract scientists and technologists especially automobile industry to study on the behaviour of the natural fibres and the characteristic of the natural fibre reinforced composites. However, certain drawbacks such as incompatibility with hydrophobic polymer matrix, the tendency to form aggregates during processing, poor resistance to moisture greatly reduce the potential of natural fibres to be used as reinforcement in polymerⁱⁱ. Moreover, no literature is made on the potential of natural fibre composites is required to investigate the potential of natural fibre composites is required to investigate the potential of natural fibre composites in structural use.

1.2 Background and Rationale of the Project

Natural fibre reinforced polymer consist of resin as a matrix and natural fibres as reinforcement. Natural fibres are formed in a very complex system and there is an enormous amount of variability in fibre properties, unlike synthetic fibres which is homogenous and constant in physical and mechanical properties. The variability of natural fibres depends upon the origin of the fibres, the quality of plant and locationⁱⁱⁱ. Hence, it is no doubt that the challenges of the natural fibres use as reinforcement in composite are greater than synthetic fibres.

In the past, the development of fibre reinforced polymeric materials in civil engineering increased rapidly where these materials in civil engineering applications are divided into two categories, structural and non structural. Structural applications are designed to sustain some degree of load like bridge, truss, I-beam, column, repair and rehabilitation applications. While non structural applications are non load bearing and they are designed based on quality guidelines and aesthetic considerations. In Malaysia, the utilizations of fibre reinforced polymeric materials in structural applications are still very low. One of the factors is the high cost of raw materials where mostly are imported from China, Japan, Europe and the United State of America^{iv}. Can local and low cost natural fibres substitute synthetic fibres in reinforced polymeric materials for structural applications?


Materials in structural applications must have sufficient mechanical strength and durability to the surrounding environments. Figure 1shows the basic mechanical properties like tensile strength of the natural fibres reinforced composites are compared with the most common materials like FRP, steel, wood, and concrete. Some of the natural reinforced composites materials (like curuau fibres) are comparable to wood, steel and FRP. However, the overall average tensile strength of the natural fibre reinforced composites falls in the range of hardwood and softwood. Therefore, natural fibre reinforced composites can replaced conventional material like timber and wood in structural applications.


The wide variety of natural fibres exhibit different types of behaviour and characteristic. To limit the scope, oil palm fibres and pineapple leaf fibres are employed in this study because it can be obtained locally.

Malaysia, the world's largest palm oil producer, produces more than 15.8 million tonnes of crude palm oil every year^v. The oil palm fibres are usually treated as residue product and cause environmental problems when disposing them. Oil palm fibres can be extracted from empty fruit bunch and its coirs. Every single empty fruit branch of oil palm yields 400 grams of oil palm fibre and weight of every fresh fruit bunch of oil palm is around 25 kg^{vi}. About 8.8 million tonnes of oil palm fibres can be produced every year and yet the mesocarp oil palm fibres are not taking into account. The enormous quantity of oil palm fibres is usually disposed by two methods, open burning or land fill^{vi}.

Currently, reports have proved that treated oil palm fibres successful act as reinforcement in composites and durable to environmental attacks^{vii}.

Pineapple leaf fibre is another natural fibre that can be obtained locally and exhibits excellent mechanical properties. The pineapple leaf fibre consists of high cellulose material and is very often associates with excellent mechanical properties. L.Uma Devi et al. study on pineapple leaf fibre composites and the composite exhibit excellent mechanical properties in tensile strength, flexural strength and impact strength. He concluded that the pineapple leaf fibres are good in reinforcing and suitable to be structural applications.

* Compression strength is compared.

Figure 1.1: The tensile strength of natural properties of natural fibre composites and other civil engineering materials.

1.3 Overall Objectives and Scope of the Study

1.3.1 Objectives of the study:

The main objectives of the study are:

- To characterise the physical and mechanical properties of natural fibre oil palm fibres.
- To characterise the tensile properties of unidirectional oil palm fibre composites as a function of fibre volume ratio, fibre length, fibre surface modification.
- 3) To compare the mechanical behaviour of reinforced concrete beam strengthened with unidirectional oil palm fibre composite, reinforced concrete beam strengthened with woven glass fibre composite and ordinary reinforced concrete beam.

1.3.2 Scope of the study:

The scope of study is established to achieve the objectives and this study will be mainly concentrated on experimental works. To limit the scope, only oil palm fibres and pineapple leaf fibres are employed as natural fibres. The fibres are obtained in fresh condition and require the extraction process.

Synolac 3317AW, unsaturated polyester resin purchased from Cray Valley Company is employed in this study for matrix system. All natural fibre reinforced polymeric material is fabricated using the closed mould-hand lay up system.

All testing methods and procedures are specified according to British Standard and American Society Testing Method.

Firstly, the physical and mechanical properties of oil palm fibres are determined. The physical properties tests include fibre length, fibre diameter, moisture content, moisture absorption and fibre density. Only tensile properties are interested in determining mechanical properties. The tensile properties include tensile strength, strain and modulus elasticity of oil palm fibres.

Due to high efficiency in contributing tensile properties, only unidirectional oil palm fibres composites are interested and tested. Three main factors influence the desired mechanical properties of unidirectional oil palm fibre composites, namely fibre volume fraction, fibre aspect ratio and interfacial shear strength. Fibre volume fraction influence the tensile properties directly, where more fibres are used, the tensile properties are improved. However, the tensile properties may start to decline after the optimum point. The tensile properties are also affected by fibre aspect ratio where high fibre aspect ratio composite usually improve the tensile properties of the composite. Another important factor is interfacial shear strength of oil palm fibres which can be improved by using alkali treatment.

Different fibre volume fraction, fibre aspect ratio and interfacial shear strength of oil palm fibre composites are fabricated and tested under tensile force to determine tensile properties. Comparisons are made and the desired tensile properties of oil palm fibre are used in the structural application.

In this study, the desired tensile properties are used as strengthening material in reinforced concrete beam. A total of three 2000 mm x 150 mm x 250 mm reinforced concrete beams are fabricated. The first beam maintain as control beam while the rest of the beams are strengthened with unidirectional oil palm fibre composite plate and woven glass fibre composite plate. Similar fibre volume fraction is employed for both strengthening material.. The mechanical behaviours of the beams are analysis and discussed.

1.4 Summary

The development of natural fibre composite for structural application is still at infancy stage. Due to the attractive properties like high specific strength and high specific modulus, natural fibre composite rapidly gains popularity in the use of automobile applications and structural applications. Compare to synthetic fibre composite, natural fibres are low cost and abundant in agro base country. The use of natural fibres in composites can reduce the impact of environmental issues.

This study is a preliminary stage to made natural fibre composite as structural application where only mechanical properties is focused. In fact, durability of this new material in structural application is equally important. The use of natural fibre composite in structural application is possible but requires more study and development in future.

CHAPTER 2

LITEATURE REVIEW

2.1 General

The development of natural fibre reinforced polymer composite is still at infancy stage. A strong background of fundamental concept of natural fibre reinforced polymer composite is discusses in the following topics.

2.2 Natural Fibre Reinforced Polymer Composition

2.2.1 Natural Fibres

Natural fibres are threadlike and thick wall cells in plants. They are always long and can be easily extracted from the plants. The fibres usually can be group according to the origins of the plant: seeds, leaf, bast, grass stem and wood. Figure 2.1 shows different types of fibres based on their group.

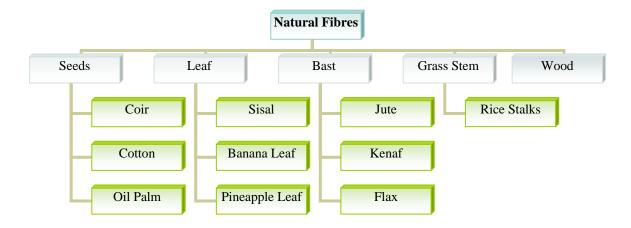


Figure 2.1: Natural fibres based on their group.

The biologists classify this type of plant cell as *Sclenchyma* cells and can be distinguished from other types of cells by its secondary wall layer. Fibres are frequently classified on the basis of vascular tissues as xlary or extraxylary. The preceding one is evolved from tracheids and the latter one occurs in tissues other than xylem. A better classification would divide the fibres into conducting fibres or non conducting fibres. Flax and hemp fibres are classified in extraxylary fibres.

The interest of natural fibre in composites increases dramtically recently due to its advantages over synthetic fibres. Table 2.1 shows the density and the cost of various types of fibres in market**Error! Bookmark not defined.** Natural fibres are low cost fibres with low density and high specific properties. They are biodegradable and cause no harm to humans, unlike the synthetic fibres which will cause health problems and environmental pollution^{viii}. Since most of the fibres are available as agricultural residue, lower environment impact compared to glass fibre production and thus reduce the disposal of agricultural residual via open burning and land fill. However, natural fibres have certain drawbacks that limit the potential of natural fibres and these are discussed more detail in the latter topic.

Fibre	Density	Cost (USD)
Flax	1.45	0.4-0.55
Hemp	1.48	0.4-0.55
Jute	1.4	0.4-0.55
Sisal	1.45	0.4-0.55
Ramie	1.5	0.4-0.55
Pineapple leaf	1.53	0.4-0.55
Cotton	1.55	0.4-0.55
Coir	1.15	0.4-0.55
Kenaf	1.4	0.4-0.55
Softwood	1.4	0.44-0.6
Hardwood	1.4	0.44-0.6
E-glass	2.5	2
S-glass	2.5	2

Table 2.1: The density and the cost of various types of fibres in market.

Natural fibres as mentioned earlier have a thick secondary wall and almost fill in the lumen of the cell. Unlike primary wall which present in all cells, secondary wall only exist in *Sclenchyma* cells. The thicker wall, the chemical composition and the texture of the microfibrils cause the wall to be stronger and resistant to fungal attacks^{ix}.

Like primary wall, the four major components in secondary wall are cellulose, hemicelluloses, pectic substances and lignin. Table 2.2 have summarizes the chemical composition of various types of natural fibres.