PSZ 19:16(Pind.1/97)

UNIVERSITI	TEKNOLOG	I MALAYSIA
OTTA I MATERIA	A MARTIN DE CO.	A TIME AND A A POINT A

BORANG PENGESAHAN STATUS TESIS

JUDUL : <u>REPAIR AND STRENGTHENING METHODS FOR</u> <u>BRIDGE SUPPORTS</u>

SESI PENGAJIAN : 2006/2007

Saya

HANIZAH BINTI ARGADAN

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Universiti Teknologi Malaysia dengan syarat-syarat kegunaannya seperti berikut :

- 1. Tesis adalah hak milik Universiti Teknologi Malaysia.
- 2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi
- 4. **Sila tandakan (✓)

(TANDATANGAN PENULIS)

NO.510 BLOK A GUGUSAN MELATI

47810 PETALING JAYA, SELANGOR

JALAN CAMAR 4/5 SEKSYEN 4

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan dimana penyelidikan dijalankan)
 TIDAK TERHAD
 MAA

(TANDATANGAN PENYELIA)

PROF. DR. AZLAN BIN ABD. RAHMAN Nama Penyelia

Tarikh :

CATATAN :

Alamat Tetap :

KOTA DAMANSARA

Tarikh: 05 Mei 200

* Potong yang tidak berkenaan.

- ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
- Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil-Structure)"

Signature	:	Makwan
Name of Supervisor	:	PROF. DR. AZLAN BIN ABD. RAHMAN
Date	:	7/5/2007

I declare that this thesis entitled "*Repair and Strengthening Methods for Bridge Supports*" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature Name Date

:

:

:

HANIZAH BINTI ARGADAN 05 Mei 200

ACKNOWLEDGEMENT

I wish to express my gratitude to those who contributes in the preparation and completion of this project dissertation especially to:

Government of Malaysia for providing the financial support during the course of this work;

My supervisor, Prof. Dr. Azlan b. Abdul Rahman for all the useful comments and suggestions for the completion of this project

Ir. Abdul Hadi Jusoh, Pn. Sherliza Zaini Sooria and Mr. Lee Choon Shiang, form Jabatan Kerja Raya for providing the information and access to the project site;

My superior, Ir. Mohd Noor Azudin b. Mansor from Jabatan Kerja Raya for his understanding during the whole duration of my study and for his invaluable assistance in the preparation of this dissertation;

Noraidah Yahya, for her kind co-operation and full encouragement in entire period of my study and for her ideas in the preparation of this dissertation;

Last but not least, to my beloved family for their pray, support and patience.

To my beloved parents

ABSTRACT

This project dissertation paper is a study on the repair and strengthening method for the support of a flyover affected by structural cracks. The study focuses on the techniques used to structurally repair or strengthen the concrete bridge piers of the selected case study involving the combination of external pre-stressing and composite method. Factor and requirement for repair and strengthening of the bridge supports have been reviewed whereby the technical aspects with respect to structural strength are studied. A hypothetical detail of bridge support has been created and investigated to study the effect on the flexural capacity of concrete section when pretensioning force imposed the CFRP strip prior to the adhesion of the plate onto the concrete bridge support. A general flow of repair and strengthening of concrete bridge support has been developed based on the analysis of the case study and results of the section analysis of the hypothetical detail. It is found that the choice of repair and strengthening method of bridge supports required a comprehensive structural investigation, careful design and construction. Data of the existing structure and its material properties, as well as the innovative approach of the construction technique are important factors for a successful implementation of the repair / strengthening method. In this particular case study, the repair and strengthening scheme which utilized a combination of external pre-stressing and composite system has been successfully applied to the bridge supports. Continuous monitoring and maintenance are required to ensure that the repair is effective in providing the solution to the structural problem.

ABSTRAK

Disertasi ini adalah untuk mengkaji teknik pembaikan dan penguatan sokong jambatan yang mengalami keretakan. Kajian ini dijalankan dengan memilih kajian kes dan memfokuskan terhadap teknik pembaikan dan penguatan sokong jambatan secara struktur. Faktor-faktor dan keperluan untuk membaiki dan menguatkan sokong jambatan telah dikaji dengan memberikan tumpuan kepada aspek kekuatan struktur. Satu butiran hipotesis sokong telah dibentuk untuk mengkaji kesan daya pra-tegangan terhadap kekuatan lenturan muktamad keratan konkrit apabila daya prategangan dikenakan kepada kepingan CFRP sebelum kepingan tersebut dilekatkan ke permukaan sokong konkrit. Satu carta aliran umum berkenaan tatacara pembaikan dan penguatan sokong jambatan konkrit telah dirangka berdasarkan kajian kes dan hasil analisis keratan butiran hipotesis tadi. Adalah didapati bahawa pemilihan cara pembaikan dan penguatan memerlukan penyiasatan struktur yang komprehensif serta rekabentuk dan pembinaan yang teliti. Data untuk struktur sediada dan sifat bahan di samping pendekatan inovatif dalam teknik pembinaan adalah faktor-faktor penting untuk perlaksanaan kaedah pembaikan dan penguatan yang berjaya. Dalam kajian kes ini, skim pembaikan dan penguatan yang mengunakan gabungan pra-tegasan luaran dan sistem komposit telah didapati berjaya diaplikasikan untuk sokong jambatan. Pemantauan dan penyelenggaraan yang berterusan terhadap kaedah pembaikan tersebut adalah diperlukan untuk memastikan bahawa ianya berkesan dalam penyelesaian sesuatu masalah struktur.

TABLE OF CONTENT

CHA	PTER		TITLE	PAGE
		DECI	LARATION	ii
		DEDI	ICATION	iii
		ACK	NOWLEDGEMENT	iv
		ABST	TRACT	V
		ABST	ſRAK	vi
		TABI	LE OF CONTENT	vii
		LIST	OF TABLES	х
		LIST	OF FIGURES	xi
		LIST	OF SYMBOLS	xiv
		LIST	OF APPENDICES	xvii
1	INTR	RODUC	TION	1
	1.1	Signif	ficance of Study	2
	1.2	Objec	ctive of Study	3
2	LITE	RATU	RE REVIEW	4
	2.1	Bridg	ge Support	4
	2.2	Struc	tural Concrete repair	5
		2.2.1	Concrete Cracks	6
		2.2.2	Crack Repair Method and Material	6
	2.3	Struc	tural Strengthening	12
		2.3.1	Steel-base Strengthening Material	12
		2.3.2	FRP-base Strengthening Material	15

	2.4	Exter	nal pre-stressing Strengthening	19
		2.4.1	Flexural Section Analysis	20
	2.5	CFRI	P Strip Flexural Strengthening	22
		2.5.1	Level of Post Tensioning	23
		2.5.2	Pre-stressed or Post-Tensioned	27
			CFRP Strips	
		2.5.3	Force Transfer from Strip to	28
			Dead and Live Anchors	
		2.5.4	Force Transfer from Dead or	30
			Live Anchor to Concrete	
3	MET	HODO	LOGY	32
	3.1	Нуро	thetical Bridge Support Detail	32
		3.1.1	Detail of Existing Section	33
		3.1.2	Detail of Strengthen Section	35
	3.2	Ultim	ate Section Capacity	37
		3.2.1	Existing Section	37
		3.2.2	Strengthen Section	40
	3.3	Case	Study Selection	45
	3.4	Gene	ral Flow of Bridge Support	45
		Repai	ir and Strengthening	
4	ANA	LYSIS	AND DISCUSSION	46
•	4.1		Head Existing Section Capacity	46
		4.1.1	Flexural Capacity in Longitudinal Direction	47
		4.1.2	Transverse Capacity of Existing Section	48
	4.2		gthen Section Capacity	48 48
		4.2.1	Flexural Capacity in Longitudinal Direction	48
		4.2.2	Transverse Capacity of Strengthen Section	50
				20

5	CAS	E STUDY: Repair and Strengthening of Middle Ring Road	52
	(MR	R2) Package 11	
	5.1	Introduction	52
		5.1.1 Description of the Structure	52
		5.1.2 Background of the Problem	54
	5.2	Description of Repair and Strengthening Work	56
		5.2.1 Detail of Repair and Strengthening	56
		5.2.2 Stages of Repair and Strengthening	59
	5.3	Conclusion	63
6	Gene	eral Guideline for Repair and Strengthening Concrete	64
	Brid	ge Support	
	6.1	Introduction	64
		6.1.1 Existing Bridge Support Assessment	64
		6.1.2 Conceptual Stage	65
		6.1.3 Detail Analysis and Design	66
		6.1.4 Construction Stage	67
		6.1.5 Service Stage	68
	6.2	Flow Chart of Repair and Strengthening Guideline Process	68
7	CON	ICLUSIONS AND RECOMMENDATIONS	70
	7.1	Conclusions	70
	7.2	Recommendations	71
REF	EREN	CES	73-75
App	endix A	A-B: 7	6-101

ix

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Mechanical / physical properties of adhesive - Sikadur 30	10
2.2	Mechanical / physical properties of epoxy resin Sikadur 31LP	11
2.3	Pre-stressing bar properties, (Dwidag System International)	15
2.4	Properties for carbon fibres (Sika CarboDur Plate)	18
2.5	Values of partial factors for FRP material	19
3.1	Reinforcement area for existing pier Crossbeam	34
3.2	Material properties for existing section	35
3.3	Technical properties of CFRP strip for strengthening	35
3.4	Technical properties of Dywidag Post Tensioning system using bar	36

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Stress-strain curves, (Collins and Mitchell 1991)	14
2.2	Properties of different fibre and KsSteel. After ACI Comitee 440 and Dejke (2000)	16
2.3	Stress-Strain diagram for Sika CarboDur	17
2.4	Stress Strain Diagram for external pre-stressing	20
2.5	Failure mechanism of beams strengthened with bonded CFRP strips with respect to the level of post-tensioning	23
2.6	Shear stress distribution inside the final anchorage induced by rear-loading of prestressing force V (τ V), front-loading of additional forces ΔZ ($\tau \Delta Z$) and its superposition (τ V+ ΔZ)	29
2.7	Transfer of pre-stressing force from anchor to concrete	30
3.1	Existing bridge support reinforcement and plan view	34
3.2	Strengthen bridge support and plan view	36
3.3	Stress-strain diagram for the existing section	38

3.4	Stress-strain diagram for the strengthen section over beam depth	40
4.1	Schematic presentation for Length vs. Moment of Resistance	50
5.1	Location map of Middle Ring Road 2 Package 11	53
5.2	Location map of Middle Ring Road 2 Package 11 (Close View)	53
5.3	Sketch of Location map for Middle Ring Road 2 Package 11	54
5.4	Stages of repair and strengthening	60
5.5	Predicted stress condition at service	61
5.6	Predicted stress condition at the application of external pre-stressing force form the steel tie frame (Prior to the closure of cracks)	61
5.7	Predicted stress condition at the application of external pre-stressing force form the steel tie frame (After the closure of cracks)	62
5.8	Predicted stress condition at the application of external pre-stressing force form the steel tie frame and the CFRP Plate	62
5.9	Predicted stress condition after the released of external pre-stressing force in the steel tie frame	62
5.10	Predicted stress condition at service after strengthening process (With assumption class 3 pre-stressing concrete member is obtained)	63

6.1	Schematic representation of repair and strengthening	
	process for bridge support with strength failure	69

LIST OF SYMBOLS

a	-	Shear span or distance from beam support to the nearest loading point
Ac	-	Gross section area of concrete section
A'_c	-	Area of crack concrete section
A_{ps}	-	Area of external tendon
$A_{s,}A_{si}$	-	Area of internal steel reinforcement
<i>b</i> _c , <i>b</i>	-	Width of beam
с, х,	-	Neutral axis
d_{frp}	-	Depth of FRP
f_c '	-	Cylinder compressive strength of concrete
f _{cu}	-	Concrete ultimate strength (Concrete grade)
f_{pe}	-	Effective tendon pre-stress
f_{ps} ,	-	Stress in external tendon
f_{si}, σ_{si}	-	Stress in internal steel
f_y	-	Ultimate strength for steel (Steel yield stress)
F_c	-	Compression strut
F_t	-	Tension tie
F_s	-	Pre-stress force tie
d	-	Effective depth of un-strengthened section (with respect to steel)
d_{pso}, d_u	-	Effective tendon depth at ultimate
E_{frp}	-	Modulus of elasticity for FRP
е	-	Eccentricity of steel tie frame
e'	-	Eccentricity of CFRP strip
E_{st}	-	Modulus of elasticity for steel
h	-	Overall beam height
k_1	-	The mean stress factor

_		
k_2	-	Concrete compressive force centroid factor
k_s	-	Second order effect
L	-	Beam span
L_u	-	Horizontal distance between end of the pre-stress tensioning strands
M_s	-	Service moment during construction
M'_s	-	Additional service moment after the release of steel tie frame
M_u	-	Ultimate Flexural strength of strengthen beam
M_{un}	-	Ultimate flexural strength of un-strengthen beam
P_i	-	Initial pre-stressing force in CFRP
P'_{st}	-	Portion of pre-stressing force from the steel tie frame
Prup	-	CFRP rupture strength
P_{st}	-	Total effective pre-stressing force from the steel tie frame
x_{cr}	-	The critical depth of neutral axis of strengthened section
<i>x</i> ₁ , <i>x</i> ₂	-	The depth of neutral axis of the section which takes into consideration
		the curve shape of pier crossbeam
Т	-	The applied horizontal load along with
V	-	Vertical force
Z_b	-	Section modulus for bottom fibre of un-crack concrete section
Z_t	-	Section modulus for bottom fibre of un-crack concrete section
Z'_b	-	Section modulus for bottom fibre of crack concrete section
Z'_t	-	Section modulus for top fibre of crack concrete section
Z_{cb}	-	Section modulus for bottom fibre of composite section
Z_{ct}	-	Section modulus for bottom fibre of composite concrete section
Z	-	Lever arm of concrete section
β	-	Estimated loses in pre-stressing of CFRP
$eta_{\scriptscriptstyle 1}$	-	Compression stress block depth factor to ACI Building Code
		(ACI Committee 1999)
\mathcal{E}_{co}	-	The compressive strain of unconfined concrete, at the peak
		stress of concrete
E _{cf}	-	Strain in concrete
е _{си}	_	Ultimate strain of concrete
E _{frp}	-	Strain in FRP
E _{frp-rup}	-	Strain in FRP at rupture for composite section
E _{frp-ini}	_	Initial strain in FRP
- <i>jrp-i</i> m		

E _{frp-max}	-	Maximum strain in FRP
\mathcal{E}_{si}	-	The strain in the steel
γc	-	Partial safety factor material (concrete) safety factor
γ_{mwE}	-	Partial safety factor for the modulus of the fibres in tension and
		compression
$\boldsymbol{\gamma}_{\mathrm{mwy}}$	-	Partial safety factor for the compressive strength of the fibres
$\gamma_{mw\epsilon}$	_	Partial safety factor for the strain capacity of the fibres in tension and
		compression and the strain at 'failure' in the fibres in compression.
$ ho_{frp}$	-	The ratio of CFRP
$ ho_{\mathit{frp} ext{-}cr}$	-	The critical ratio of CFRP
σ_{c}	-	Stress in concrete before strengthening
σ_c'	-	Stress in concrete after strengthening
$\sigma_{\!f\!rp}$	-	Stress in FRP
$ ho_{si}$	-	The ratio of internal steel
Ω_{u}	-	Bond reduction coefficient at the ultimate limit state

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Pictures on Repair and Strengthening Works of Middle Ring Road, (MRR2) Package 11	76-90
В	Result for Hypothetical Bridge Support Analysis	91-101

CHAPTER 1

INTRODUCTION

Bridge generally needs structural modification when there is insufficiency strength caused by design inadequacies, incorrect detailing, improper construction or loss of stiffness due to material deterioration. Sometimes combination of these factors exists. The most common methods of structural modification are in the form of repairing, stiffening or strengthening the existing structure. Strengthening and stiffening are also necessary due to increase in live load and design code revision.

Failure in serviceability limit state attracts concern from the public. The safety of public facilities and infrastructure always become an issue when there is apparent concrete crack, excessive deflection and unacceptable vibration. Occurrence of this symptom is also the warning to the ultimate safety of a structure. As for bridge, these symptoms need particular repair or strengthening method to reinstate the bridge to it original service level.

Bridge support; the pier, pier cap and abutment, are considerably important to be maintained, repaired and strengthened where necessary. Damage of bridge support that is not repaired or strengthened properly would affect the bridge integrity as a whole. When reconstruction or demolition is not an option, innovation in method of structural repair or strengthening should be the solution. However, repair and strengthening method need to consider a suitable theoretical background for a successful scheme. Cause of failure, existing condition of structure, the material compatibility and constructability are all equally important in short listing the possible solutions for repair or strengthening a structure. For concrete bridge structure whether by attaching the repair material directly onto the concrete surface to form composite, crack grouting or reinstating the structure via external prestressing, must undergo proper evaluation and selection.

Recent development in advanced civil engineering material provides variety of options for repair technique to suit the required condition of a deficient structure. Furthermore, the cost factor must be taken into consideration and in most cases this is the major determining factor.

1.1 Significance of Study

The study provides more evidence on the applicability of the existing theoretical background for repair and strengthening of bridge superstructure. Compiling the state-of-the-art technology in repair, stiffening and strengthening of bridge support provides a possibility for improvement of the existing engineering judgements or assumption made in designing the bridge repair and strengthening. If the technical aspects in state-of-the-art-technique such as safety factor, material mechanical properties, and static mechanic involves as well as the suitable assumptions made in bridge support modification work is continuously collected, a general guidelines for structural repair, stiffening and strengthening of bridge support is possible. Furthermore, through a case study, the necessary measure or good engineering practices adopted during the process of modification of bridge support can be documented. This is important to identify what are the do's and don'ts during

the repair and strengthening work for an acceptable level of performance and durability of the repair material and the modified bridge support as a whole.

2.1 **Objective of Study**

The objective of this case study is to review the factors and requirements for strengthening of concrete bridge support. The study will also investigate the technical aspects of strengthening techniques for concrete bridge support through a selected case study.