	PSZ 19:16 (Pind.	1/97)
--	-------------	-------	-------

BORANG PENGESAHAN STATUS TESIS

JUDUL: EARTHQUAKE ANALYSIS OF IBS FOR SINGLE STOREY HOUSING

SESI PENGAJIAN: 2006 / 2007

Saya

4.

v

SITI RADIAH BINTI YUNUS (HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Universiti Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universiti Teknologi Malaysia.
- 2. Perpustakaan Universiti Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

** Sila tanda (v)

SULIT

TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat yang TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap: <u>62 A, JALAN PERMAI 6,</u> <u>TAMAN PERKOTA,</u> <u>75350 MELAKA.</u>

Tarikh: <u>29 JUN 2007</u>

		- de	
(TANDATANGAN PENYELIA	A)	TANGAN PENVELIA	TAND

Disahkan oleh

P.M. DR. ABOUL KADIR MARSONO (Nama Penyelia)

Tarikh: 29 JUN 2007

CATATAN:

* Potong yang tidak berkenaan

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD

 Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertai bagi pengajian secara kerja khusus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

Date: June, 2007

Librarian Perpustakaan Sultanah Zanariah UTM, Skudai Johor

Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

EARTHQUAKE ANALYSIS OF IBS FOR SINGLE STOREY HOUSING SITI RADIAH BINTI YUNUS

Please be informed that the above mentioned thesis entitled "EARTHQUAKE ANALYSIS OF IBS FOR SINGLE STOREY HOUSING" be classified as RESTRICTED for a period of three (3) years from the date of this letter. The reasons for this classification are

i. COMMERCIALIZATION OF RESEARCH PRODUCT

- ii. NEGOTIATION STAGE WITH UTSB SDN BHD AS BUSINESS CONSULTANT
- iii. NICHE IBS PRODUCT COMPONENT ARE WAITING TO BE MANUFACTURED

Thank you

Sincerely yours,

ASSOC. PROF. DR. ABDUL KADIR MARSONO M46-238 07-5531606 013 7257737 I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil-Structure).

Signature ÷ : ASSOC. PROF. DR. ABDUL KADIR MARSONO Name of Supervisor Date : 29 JUNE 2007

EARTHQUAKE ANALYSIS OF IBS FOR SINGLE STOREY HOUSING

SITI RADIAH BINTI YUNUS

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil -Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2007

I declare that this project report entitled "Earthquake analysis of IBS for single storey housing" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

 \sim Signature

Name

Date

: SITI RADIAH BINTI YUNUS : 29 JUNE 2007 ii

To my beloved father, mother, brothers and sisters.....

ACKNOWLEDGEMENT

In preparing this project report, I was in contact with many people. They have contributed towards my understanding and thoughts. I would like to express my sincere appreciation to my supervisor, P.M. Dr. Abdul Kadir Marsono for his encouragement, guidance, advices, critics and moral support.

I am also thankful to all lecturers that gave me some guidance, advices and critics to complete this project report. My sincere appreciate also extends to all my friends especially to Muhamad Ilmam Faris, Nur Fatimah, Nurul and Wan Rizana.

Finally, I am grateful to all my family members, my father and mother, Yunus Bin Said and Ramlah Binti Mahmud, brothers and sisters, Riduan, Zamri, Norsidah and Aisyah for their encouragement and support. Without their continued support and interest, this project report would not have been the same as presented here.

ABSTRACT

An earthquake is the motion or trembling of the ground produced by sudden displacement of rock in the Earth's crust and has the potential for causing a number of actions that may be hazardous. One of the constructions methods that may be able to take into account of earthquake effects in the design considerations is Industrialised Building System (IBS) due to its flexibility at joints and lateral stiffeners at bracing that able to absorb the vibrations. IBS is a building system in which structural components are manufactured in a factory or at site factory and then transported, assembled into a structure with minimal site wet work and erected on the site properly joined to form the final units. Single storey housing was analyzed by using *Multiframe 4D* software in this study. The structural modeling consist of conventional and IBS model. The analyses were carried out with and without seismic loads. The results were interpreted in order to determine the behaviour of each construction method to withstand the design loads and seismic loads.

ABSTRAK

Gempa bumi adalah pergerakan atau gegaran yang terjadi disebabkan berlakunya anjakan pada kerak bumi yang boleh mengakibatkan kemusnahan yang teruk. Salah satu kaedah pembinaan yang boleh mengambil kira kesan daripada gempa bumi dalam rekabentuk pembinaan ialah IBS (*Industrialized Building Systems*) berdasarkan sifat kebolehlenturannya pada sambungan dan boleh menyerap getaran. IBS adalah sistem bangunan di mana komponen-komponen strukturnya dihasilkan di kilang, kemudian diangkut ke tapak pembinaan, dipasang dan disambung menjadi struktur yang lengkap. Kaedah pembinaan ini memerlukan tenaga kerja yang sedikit dan memberikan tapak pembinaan yang bersih. Di dalam kajian ini, rumah satu tingkat dianalisis dengan menggunakan perisian *Multiframe 4D*. Pemodelan terbahagi kepada dua iaitu model IBS dan model konvensional dan analisis dibuat menggunakan dua keadaan iaitu tanpa beban seismik dan apabila beban seismik dikenakan. Keputusan yang diperolehi daripada analisis dikaji bagi mendapatkan sifat kelakuan bagi setiap kaedah pembinaan dalam menanggung beban-beban yang dikenakan.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	XV
LIST OF APPENDICES	xvi

1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	5
1.3	Objective	5
1.4	Scope of Study	6
1.5	Importance of Study	6

2 LITERATURE REVIEW - IBS

2.1	Industrialized building system (IBS)	7
2.2	Types of IBS	8
2.3	Characteristic of IBS	10
2.4	Advantages of IBS	11
2.5	Disadvantages of IBS	11
2.6	Comparison of IBS and Conventional	12
	Systems	
2.7	Modular Coordination	13
2.8	Open Building Systems	15
2.9	Precast concrete structural	15
2.10	Types of Structural Systems in Precast	16
	Concrete Structures	
	2.10.1 Skeletal Systems	16
	2.10.2 Wall Frame Systems	18
2.11	Connection	19
	2.11.1 Pinned connection	21
	2.11.2 Rigid connection	22
2.12	Formation Process of Precast Concrete	23
	Structure	
	2.12.1 Precast column	25
	2.12.2 Precast beam	26
2.13	Framing Considerations	27
	2.13.1 Behaviour of the Frame Systems	27

3 LITERATURE REVIEW – EARTHQUAKE 29

3.1	Earthquake Definitions	29
3.2	Earthquake Waves	30
3.3	Seismographs and Seismograms	31
3.4	Earthquake Frequency	33

3.5	Earthqu	ake in the USA	34
	3.5.1	Alaska earthquake of Good Friday	35
		1964	
3.6	Earthqu	lake in Japan	36
	3.6.1	Niigata earthquake of 16 June 1964	36
	3.6.2	Great Hanshin Earthquake / Kobe	37
		Earthquake	
3.7	Earthqu	uake in Sumatra, Indonesia	39
	3.7.1	The effect of the Sumatran	42
		Earthquake to Malaysian Peninsular	
		(November 2, 2002)	
3.8	Damag	e Index	44
3.9	Earthqu	ake effects on Building Structures	45

4 METHODOLOGY

4.1 Introduction 47 4.2 Flow of Study 48 4.3 IBS Model 49 4.3.1 Section Properties of IBS 49 Component Material Properties of IBS 4.3.2 50 Component 4.4 Multiframe 4D 51 4.5 Section Maker 52 4.6 Procedure in Modeling 53 53 4.6.1 Making sketches to frame analysis and deriving geometrical and loading data Making section properties using 4.6.2 54 section maker Starting Multiframe4D for modeling 4.6.3 56

4.6.4	Assigning restraints to support	57
4.6.5	Prescribing the load on members of	58
	building	
4.6.6	Load combination	59
4.6.7	The analysis	60
4.6.8	Viewing the results	60
4.6.9	Seismic Analysis	61

5 ANALYSIS		SIS OF RESULTS	62
	5.1	Introduction	62
	5.2	Result of Static Analysis	63
	5.3	Result of Seismic Analysis	66

6 CONCLUSIONS AND RECOMMENDATIONS 70

6.1	Conclusions	70
6.2	Recommendations	71

REFERENCES		72
APPENDICES		74
А	Layout of Single Storey Housing	74
В	IBS Components	75
С	Component Cross Section	79

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	IBS constructions	4
2.1	Comparison between IBS and Conventional System	12
3.1	Mains types of seismic waves	30
3.2	Earthquake Frequency Worldwide	33
3.3	The Ten Largest Earthquakes	33
3.4	Estimated Deaths of Earthquakes Worldwide	34
3.5	The Largest Earthquake in US	34
3.6	Information of Kobe Earthquake	38
5.1	Rotational on Joint 18	65
5.2	Rotational on Joint 14	67

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Location of Earthquakes	3
1.2	IBS components	3
2.1	Precast Concrete Framing, Panel and Box Systems	8
2.2	Steel Formwork Systems	9
2.3	Steel Framing Systems	9
2.4	Prefabricated Timber Framing Systems	9
2.5	Block work Systems	10
2.6	Conventional Construction Method	13
2.7	Industrialised Building System Method	13
2.8	Definitions in a precast skeletal structure	17
2.9	Definitions in a precast portal frame	17
2.10	Precast Walls	18
2.11	Types of connections	20
2.12	Pinned Connection	21
2.13	Positions of the moment resisting connections in	22
	skeletal structures	
2.14	Rigid Connections	23
2.15	Erection of precast concrete components	24
2.16	Column positioning and propping	26
2.17	Beam positioning on columns	26
2.18	Response of moment frame	28
3.1	Form of seismic waves	31
3.2	Seismogram	32
3.3	Alaska Earthquake (1964)	36

3.4	Niigata Earthquake (1964)	37
3.5	Location of Kobe Earthquake	38
3.6	Approximate plate tectonic boundaries in the region	40
	of the Sumatra earthquake	
3.7	Seismic stations of the IRIS Global Seismic	40
	Network	
3.8(a)	Displacement seismogram recorded at OBN	41
3.8(b)	Displacement seismogram recorded at KWAJ	41
3.8(c)	Displacement seismogram recorded at SUR	41
3.8(d)	Displacement seismogram recorded at CASY	41
3.9(a)	Peak Ground Acceleration contours (Youngs)	43
3.9(b)	Peak Ground Acceleration contours (Atkinson &	43
	Boore)	
3.10	Damage Spectrum	45
3.11	Interaction between column and beam during an	46
	earthquake	
4.1	Flowchart of Methodology	48
4.2	Structural Model	49
4.3	Multiframe 4D	51
4.4	Section Maker	52
4.5	Structural modeling in Multiframe 4D	54
4.6	Cross section for structural member	55
4.7	Material Properties	55
4.8	Assigning the section properties	56
4.9	Assigning restraints to support	57
4.10	Rendering of structure	58
4.11	Combination of loads	59
4.12	Plot / Results Windows	60
4.13	Seismic Analysis	61
5.1	Combination of loads	63
5.2	Critical Joint	64
5.3	Selected joint and member	64
5.4	Bending moment diagrams	65

5.5	Seismic loads applied to structural modeling	66
5.6	Base Shear	68
5.7	Deflection of beams	68

LIST OF SYMBOLS

f_y	-	Characteristic strength of steel
f_{cu}	-	Characteristic strength of concrete
f_s	-	Estimated design service stress in the tension reinforcement
Es	-	Modulus of elasticity of steel
Ec	-	Modulus of elasticity of concrete
<i>V</i> _c	-	Poisson's ratio of concrete
Vs	-	Poisson's ratio of steel
?c	-	Density of concrete
?s	-	Density of steel
?	-	Rotational at joint
b	-	Width or effective width of the section or flange in the
		compression zone
X	-	Depth to the neutral axis
As'	-	Area of compression reinforcement
d	-	Effective depth of the tension reinforcement
d'	-	Depth to the compression reinforcement
Μ	-	Design ultimate moment at the section considered
v	-	Design shear stress

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Layout of Single Storey Housing	74
В	IBS Components	75
С	Component Cross Section	79

CHAPTER 1

INTRODUCTION

1.1 Introduction

Earthquakes are one of the most devastating natural disasters on earth. A strong earthquake is a natural disaster which brings sudden fatality, great economic loss and shock to the community [1]. An earthquake is the vibratory movement of the earth's surface that follows a sudden release of energy in the crust [2]. Earthquakes may occur naturally or as a result of human activities. Figure 1.1 shows the location of earthquakes with different magnitude and depth. The point on the ground surface immediately above the initial rupture point is called the epicenter of the earthquake. The quake effects depending on the location of the epicenter. Earthquakes are very difficult to predict. Therefore, the only way to prevent structural damage against seismic loading in earthquake areas is to design and construct the structure for earthquake loading even for low storey buildings.

One of the construction methods that may be able to take into account of earthquake effects in the design considerations is Industrialised Building System (IBS) due to its flexibility at joints and lateral stiffeners at bracing that able to absorb the vibrations. In Malaysia, IBS closed system or precast construction is not a new construction method [3]. IBS is a system where parts, members, and elements of structures are produced beforehand at the factory and transported to the site of construction [4]. The elements of structures that produced in factory or at site factory such as walls, column, slab, staircase, beam, windows, doors as shown in Figure 1.2.

The Industrialised Building Systems (IBS) is a construction process that utilizes techniques, products, components, or building systems which involve prefabricated components and on-site installation. Industrialization has demonstrated to reduce the costs, improve the quality and get complex products available at high quality of finishing to the vast majority of people [5].

Many world-class Malaysian developers have chosen precast over the conventional methods for important projects such as the Petronas Twin Towers, Putrajaya, KL Sentral and KLIA. But the real component to meet IBS standardization is not available in Malaysia. Other IBS projects around the world are shown in Table 1.1. IBS application can be effectively used with modular coordination concept and standardization. Modular coordination is an international system of dimension standardization in building based on ISO Standards. IBS is the system which covers all types of structures but it is always misinterpreted as systems limited only for the construction of buildings [3].

In this study, single storey housing model is constructed using conventional construction and IBS component. The analysis is carried out by using *Multiframe* 4D. The analysis includes a static and earthquake effects. The profile behaviour between the conventional system and IBS are obtained from the analysis.

Figure 1.1: Location of Earthquakes

Figure 1.2: IBS components

IBS constructions	Description
For the second s	 It is the first hospital in Malaysia to be built using the hybrid IBS-steel and precast concrete structures. It is constructed at an elevated site near to the PLUS Highway-Kajang Interchange on the way to Putrajaya.
With the second secon	 The first structural high-rise precast concrete building in Indonesia. All beams, slab soffits, and exterior column claddings were constructed of precast concrete and tied together with an in-situ reinforced concrete topping to integrate all precast elements into a monolithic structural frame.
Ramon Magsaysay Building Manila, Philippines	• An 18-storey, 15540 square meter office building with composite precast, prestressed concrete floor frame designed for Seismic Zone 3 forces.
Dalian Xiwang Building Dalian China	• 43-storey precast concrete office building utilizing precast concrete beams, slabs and exterior architectural cladding designed for high seismic activity.

Table 1.1: IBS constructions

1.2 Problem Statement

Frequent earth tremor is happening around the world. Earthquakes have the potential for causing a number of actions that may be hazardous. It is possible to damage the buildings in some cases with little warnings. The motion caused by earthquake is the speed and the cyclic nature of the motion. The stress producing forces that are exerted on a building during such motions are affected by the relative stiffness and mass of the building itself. Thus evaluation of the potential damage must include considerations of properties of the buildings, as well as the specific nature of the ground movements. The IBS is capable to inherit the earthquake design. The problem in Malaysia is even the earthquake resistant design is only in manufacturing philosophy and not even the IBS components are designed to resist the seismic loads. Civil engineering is not catering the earthquake analysis for building entirely. The objective of the earthquake analysis in IBS is to inherit the analysis and design of the components and constructions for earthquake event.

1.3 Objective

The objectives of the study focus on achieving a better understanding of the IBS constructions. Specific objectives include:

- To model a single storey housing constructed by IBS component and conventional construction method and analyzed by using *Multiframe* 4D.
- ii. To evaluate the response of the building system under various types of loads (with and without earthquake loads).
- iii. To compare the joints rotation between IBS model and conventional model in order to assess the joint stiffeners / flexibility.

iv. To determine capacity of member in order to meet the design standardization.

1.4 Scope of Study

The study includes a review of Industrialized Building Systems and earthquakes process in order to have an understanding of the systems and behaviour of the ground motions. IBS model and conventional model were analyzed by using *Multiframe 4D*. Various natural civil engineering loads were used to define the deformation of each structural component. The behaviour of the components were identified and classified according to their performance.

1.5 Importance of Study

The study is to develop an understanding of the IBS system to ensure a successful upgrading of our construction industry toward the standard of IBS in Malaysia. In other words, to produce the structures that has an adequate earthquake resistant ability. The dependency on foreign workers by the Malaysian construction industry could be reduced by using Industrialised Building Systems (IBS) which does not require much wet trades, and hence, minimal usage of skilled labour is needed [6]. Beside that, IBS also have potential in earthquake damage reduction built-in property for housing. Therefore, Malaysian construction industry is to be persuaded to embed the earthquake design on IBS projects implementation to inherit earthquake design.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.