UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF 1	HESIS /	UNDERGRADUATE PR	OJECT PAPER AND COPYRIGHT
	мон	ID ZULKARNAAIN BIN	SULAIMAN
Author's full name : _	02 SE	PTEMBER 1980	
Date of birth : -	BEHA		WITH IN-PLANE HOLLOW
Title : -	CIRC	ULAR INCLUSION	
- Academic Session:	2007	/ 2008	
I declare that this thesi	s is classif	ied as :	
CONFIDEN	ITIAL	(Contains confidential Act 1972)*	information under the Official Secret
RESTRICTE	D	(Contains restricted information organization where res	ormation as specified by the earch was done)*
	CESS	I agree that my thesis t (full text)	o be published as online open access
l acknowledged that l	Jniversiti T	eknologi Malaysia reser	ves the right as follows:
2. The Library of U	niversiti Te	of Universiti Teknologi M eknologi Malaysia has th	alaysia. e right to make copies for the purpose
of research only 3. The Library has		to make copies of the th	nesis for academic exchange.
MII M	lani-		Certified by :
SIGNATUR	RE		SIGNATURE OF SUPERVISOR
800902 - 1	4 - 562	7	DR. REDZUAN ABDULLAH
(NEW IC NO. /PA	SSPORT N	10.)	NAME OF SUPERVISOR
Date : 23 NOVEMB	ER 2007		Date : 23 NOVEMBER 2007

NOTES :

*

If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I / We * declare that I / we * have read through this project report and to my / our opinion this report is adequate in term of scope and quality for the purpose of awarding the degree of Master of Engineering (Civil – Structure)"

Signature	:	tupz
Name of Supervisor	:	DR. REDZUAN BIN ABDULLAH
Date	:	23 November 2007

BEHAVIOR OF CONCRETE WITH IN-PLANE HOLLOW CIRCULAR INCLUSION

MOHD ZULKARNAAIN BIN SULAIMAN

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Engineering (Civil – Structure)

Faculty of Civil Engineering Universiti Teknologi Malaysia

NOVEMBER, 2007

I declare that this project report entitled "Behavior of concrete with in-plane hollow circular inclusion" is the result of my own research except as cited in the references. The report has not been accepted for my degree and is not concurrently submitted in candidature of any other degree.

hlhn

Signature : Name of Supervisor : Date :

MOHD ZOLKARNAAIN BIN SULAIMAN 23/11/2007

DEDICATION

Alhamdulillah thank to Allah with blessing me for finishing my Master Degree report. Secondly, thank to my lecture Dr. Redzuan Abdullah that giving me guidance to produced this report. Lastly, to my Allahyarham my father, my mother, my brother and sister also my fiance that give me strength and courage.

Mohd Zulkarnaain Bin Sulaiman Universiti Teknologi Malaysia November 2007

ABSTRAK

Blok konkrit berukuran 200 mm x 200 mm x 200 mm yang mengandungi lubang bulat pelbagai saiz menembusi keseluruhan ketebalannya telah diuji secara ujian mampatan. Datanya telah digunakan untuk tujuan pengesahan analisis dengan menggunakan kaedah unsur terhingga tak terlurus. Mekanisma kegagalan blok konkrit, anjakan tegak, keupayaan menanggung beban dan taburan tegasan telah dikaji. Didapati dengan pertambahan saiz lubang akan menyebabkan pengurangan kekuatan blok konkrit, pertambahan anjakan tegak, pengurangan taburan tegasan dan pengurangan keupayaan blok konkrit menanggung beban. Hubungan antara saiz lubang dengan parameter tersebut adalah lelurus.

ABSTRACT

Concrete blocks measuring 200 mm x 200 mm x 200 mm with variable sizes of circular inclusions through their thicknesses were tested by applying compressive force. The test data was used to verify the analysis results using non linear finite element method. Once the FE model has been verified, failure mechanism, for vertical displacement, load bearing capacity and stress distribution were studied. With increasing void sizes, the strength of the concrete block decreases, the vertical displacement increases, the strength of the concrete block decreases, the vertical displacement increases. The relationship between void sizes and these parameters are linear.

TABLE OF CONTENTS

TITLE

REPORT STATUS VALIDATION FORM	i
SUPERVISOR DECLARATION	ii
TITLE PAGE	iii
STUDENT DECLARATION	iv
DEDICATION	V
ABSTRAK	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS AND ABBREVIATIONS	xiv
LISTOF APPENDICES	xv

CHAPTER 1 INTRODUCTION

`

1.1	Introduction	1
1.2	Objectives	2
1.3	Scope of study	3

PAGE

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	4
2.2	Previous research	5
2.3	Hollow concrete block requirement	10
2.4	Properties materials	11
	2.4.1 Material properties	11
	2.4.2 Types of cement	11
	2.4.3 Water in concrete block	12
	2.4.4 Aggregate and sand	13
	2.4.5 Modulus of elasticity	13
	2.4.6 Curing	13
2.5	Finite element analysis	15
2.6	Finite element in concrete	16

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introduction	17
3.2	Preparation of test specimens	17
3.3	Void sizes and curing	20
3.4	Test procedure	21
3.5	FE Model.	22
3.6	Material properties used in FE	23
	modeling analysis	
3.7	Analysis control parameters	23
3.8	Comparison and result	24

CHAPTER 4 RESULTS AND DISCUSION

4.1	Introduction	25
4.2	Comparison between FEM analysis	25
	and test result	
4.3	Effect of void sizes	26
4.4	Stress distribution contour	30
4.5	Crack and crush pattern	32

CHAPTER 5 CONCLUSIONS

5.1 Conclus	ion	34
-------------	-----	----

REFFERENCES

36

APPENDICES

37

LIST OF TABLES

TABLES NO.TITLEPAGE

2.1	Properties of hollow masonry block prism	6
	proposed by Khalaf et al.(1994) and	
	Ramamurty et al. (2000)	
2.2	Concrete block prism properties proposed	9
	by Lourenco et al. (2006).	
2.3	ASTM Types of Portland cement	14
	[A.M.Neville (1994)]	
4.1	Effect of void on the maximum load and	28
	displacement	

LIST OF FIGURES

FIGURES NO. TITLE

PAGE

2.1	Previous studies on hollow concrete block	5
	proposed by Khalaf et al.(1994) and	
	Ramamurty et al. (2000).	
2.2	FE analysis by Köksal et. al, (2005)	7
2.3	Concrete masonry block; (a) Bock 1: two cell;	8
	(b) Block 2: 3 cell proposed by	
	Lourenco et al. (2006).	
2.4	Concrete block arrangement for testing	8
	proposed by Lourenco et al. (2006).	
2.5	Test specimen diagram proposed by	9
	Lourenco et al. (2006).	
2.6	Test result obtained by Lourenco et al. (2006)	10
2.7	Ordinary Portland cement type I	12
2.8	Stress-strain curve for an elastic-plastic material.	15
2.9	Visualization of deflection in material.	16
3.1	Plywood mold .	18
3.2	Batching the concrete	18
3.3	Creating void at the center concrete block	
	with PVC pipes.	19
3.4	Concrete left to harden	19
3.5	Finished specimen without PVC pipes	20
3.6	Compression test diagram	21
3.7	Finite element mesh	22
4.1	Load versus displacement from test result	27
4.2	Load versus displacement from FE analysis	27

4.3	Maximum load versus void sizes from test	
	and FEM result.	28
4.4	Maximum displacement versus void sizes	
	from test and FEM result	29
4.5	Strength reduction for test specimen	29
4.6	Maximum stress comparison between	30
	test result and FE analysis.	
4.7	Contour for stress equivalent (σ_{SE}) for FE result	31
4.8	Crack and crush pattern from FE analysis	32
4.9	Comparisons crack and crush pattern from	
	FE analysis and test	33

LIST OF SYMBOLS AND ABBREVIATIONS

А		Area of concrete surface (mm)
Е	-	Young's modulus (kN/mm ²)
fcu	-	Concrete grade
$f_{\rm yk}$		Reinforcement steel strength
λm	-	Partial safety factor for strength of material
f'_m	-	Compressive strength of concrete masonry prism.
f_{mr}	-	Compressive strength of mortar.
f_{bl}	-	Compressive strength of concrete block.
f_{gr}	-	Compressive strength of grout.
Р		Loads (kN)
σ	-	Stress (kN/mm ²)
σ_{SE}		Stress equivalent
3	-	Strain

LIST OF APPENDICES

FIGURES NO. TITLE PAGE

1.	Testing setup	37
2.	Load versus displacement for specimen	37
	with no void.	
3.	Load versus displacement for specimen	38
	with 38.1 mm dia. void.	
4.	Load versus displacement for specimen	38
	with 50.8mm dia. void.	
5.	Load versus displacement for specimen	39
	with 63.5 mm dia. void.	

CHAPTER 1

INTRODUCTION

1.1 Introduction

Occasionally, brick or concrete block walls for buildings had to be drilled holes through their thickness. This reason are for passing services such as wiring ducts, water piping, air conditions duct, etc. When the holes are provide, the strength of the walls, especially those that carry the load will be affected. Stress concentration generally occurs around the holes and crack usually initiate around this area. The study of the behavior concrete block with in-plane circular hollow-inclusion is needed. Stress concentration and maximum load carrying capacity are two important parameters that should be looked into. In the past, studies on hollow concrete block focused more on vertical holes, but not on the horizontal hole through the thickness.

The primary aim of this project is to study the behavior of a structure can be load carrying capacity, deflection (deformation shape), stress concentration, crack pattern failure mode,(all related to structure). With continuing development of computer software and hardware, and with the new finding in material, the finite element method can be used for simulation for experiments and to predict the structural performance and behavior of the hollow in-plane concrete block. The nonlinear finite

element analysis of the hollow concrete block reported in this paper was carried out by the LUSAS 13.6 software package. The finite element analyses were compared with the test result conducted in the University Technology Malaysia, civil laboratory.

1.2 OBJECTIVES

The objectives of this research were:

- To study the behavior of concrete block with in-plane circular hollow inclusion under compression load by non linear FE method. The parameters to be studied included the ultimate load capacity, stress contour, crack pattern and failure mode.
- 2. To conduct compression test on concrete blocks with and without circular holes for validation of the FE model.
- 3. To study the percentage of strength reduction due to increasing the void sizes in concrete block with in-plane circular hollow inclusion.

1.3 SCOPE OF THE STUDY

The scopes of work for this research are:

1. Two dimension of FE modeling using plane stress element.

- 2. Only one hole at the middle of the concrete block were investigated but the size of holes will be varies.
- 3. The same characteristic for material properties and analysis of parameter control used for all FE modeling.
- 4. The dimensions of concrete block size 200 mm x 200 mm x 200mm were used.