PSZ 19:16 (Pind. 1/97) UNIVERSITI TEKNOLOGI MALAYSIA					
BC	BORANG PENGESAHAN STATUS TESIS*				
JUDUL :	<u>CORROSI</u> CONCRET	<u>ON MANA</u> <u>CE</u>	<u>GEME</u>	<u>NT OF ST</u>	EEL REINFORCED
		SESI PENG	AJIAN :	<u>2005 / 2006</u>	
Saya		CHEV	W WE-SI	EN	
_		(HU	RUF BES	SAR)	
mengak Univers	u membenarkan tes iti Teknologi Malay	is (PSM /Sarja ⁄sia dengan sy	na/ Dokto arat-syara	r Falsafah)* i at kegunaan se	ni disimpan di Perpustakaan eperti berikut:
1. Te 2. Pe	esis adalah hakmilik rpustakaan Univers ngajian sahaja	Universiti Te iti Teknologi I	knologi N Malaysia	Ialaysia. dibenarkan m	embuat salinan untuk tujuan
3. Pe	rpustakaan dibenar	kan membuat	salinan te	sis ini sebaga	i bahan pertukaran antara
4. **	institusi pengajian tinggi. 4. ** Sila tanda (√)				
	SULIT	(Mengand kepentinga AKTA RA	ungi makl an Malays AHSIA RA	lumat yang be ia seperti yan ASMI 1972)	erdarjah keselamatan atau ag termaktud di dalam
	TERHAD	(Mengand oleh organ	ungi makl iisasi/bada	lumat yang T an di mana pe	ERHAD yang telah ditentukan nyelidikan dijalankan)
\checkmark	TIDAK TERH	IAD			
					Disahkan oleh
(TAI	NDATANGAN PE	NULIS)		(TAND	ATANGAN PENYELIA)
Alamat Tetap:				PROF. M	ADYA WAN ZULKIFLI
13 TA	13, LORONG KURAU 5,				WAN YUSOF Nama Penyelia
8	4000 MUAR, JOH	OR.			r and r onyona
Tarikh:	April 2006			Tarikh:	April 2006

CATATAN: * Potong yang tidak berkenaan.

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertai bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM). "We hereby declare that we have read this project and in our opinion this project is sufficient in terms of scope and quality for the award of the degree of Master of Science (Construction Management) by taught course."

Signature	:	
Name of Supervisor I	:	ASSOC. PROF. WAN ZULKIFLI WAN
		YUSOF
Date	:	April 2006

Signature	:	
Name of Supervisor II	:	MR. BACHAN SINGH
Date	:	April 2006

CORROSION MANAGEMENT OF STEEL REINFORCED CONCRETE

CHEW WE-SEN

A project report submitted in partial fulfillment of the requirements for the award of the Degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > **APRIL, 2006**

I declare that this thesis entitled "Corrosion Management of Steel Reinforced Concrete" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: CHEW WE-SEN
DATE	: APRIL 2006

TO MY BELOVED MOTHER, FATHER AND SISTERS

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to my supervisors, PM. Wan Zulkifli Wan Yusof and Mr. Bachan Singh who have been providing guidelines and information for the completion of this report. They have shown great faith in me and has been very supportive throughout the research. Also, not forgetting to extend my gratitude to all lecturers of Falkulti Kejuruteraan Awam (FKA),UTM for their nurturing. To all staffs of UFT Sdn. Bhd and Sinct Lab Sdn. Bhad who had offered many helpful information in preparation of case study.

Last but not least, to my family and friends for their care and encouragement that has inspired me to complete this work. This work could not have been completed without their unconditional support.

ABSTRACT

Structural failures are closely linked with the corrosion of steel bar in reinforced concrete. Repair or maintenance works on corroded structures are usually costly. Corrosion is actually a slow process and can be detected for further repair before causing any damage. Failure to do so would only cause expensive economical as well as physical damage to the structure itself. Corrosion management includes activities performed to mitigate corrosion, to repair corrosion-induced damage and to replace the structures that are badly corroded. The objectives of this study are to study the corrosion management program, to identify the methods of corrosion prevention, to evaluate the cost-benefit ratio of corrosion management and to identify the problems in the management of corrosion. The study was carried out by conducting literature reviews, questionnaires and interviews. The data collected through questionnaires were then analyzed using average mean index. The outcome of the study indicates that awareness of practicing professional is relatively low regarding issues on corrosion management. The potential of cost saving through implementation of proper management program can be surprisingly high

ABSTRAK

Kegagalan struktur pada kebiasaannya berkait rapat dengan masalah pengaratan besi tetulang dalam konkrit. Kerja penyelenggaraan atas struktur yang berkarat pada kebiasaannya akan menyebabkan kos yang tinggi. Pengaratan adalah prosess yang perlahan dan keadaannya boleh dibaiki. Kegagalan untuk memperbaiki masalah pengaratan pada fasa awal hanya akan menelan kos yang lebih tinggi. Program pengurusan pengaratan termasuk aktiviti-aktiviti yang dilaksanakan untuk memberhentikan pengaratan, membaiki pulih struktur yang berkarat dan juga mengganti anggota struktur yang terkarat. Kajian ini dijalankan untuk menentukan tatacara pengurusan masalah pengaratan yang berpotensi untuk menjimatkan kos. Untuk mencapai matlamat kajian ini, soal selidik, temubual serta kajian kes telah dilaksanakan. Keputusan daripada kajian ini didapati bahawa tahap kesedaran para professional terhadap masalah pengaratan masih rendah. Masalah ini perlu diatasi supaya pelaburan ke atas struktur adalah lebih effisien. Juga didapati, jumlah wang yang berpontensi boleh dijimatkan adalah tinggi sekiranya adanya system pengurusan yang baik terhadap masalah pengaratan.

TABLE OF CONTENTS

CHAPTER	TIT	LE	PAGE
	THE	SIS STATUS DECLARATION	i
	SUP	ERVISOR'S DECLARATION	ii
	TITI	LE PAGE	iii
	AUT	HOR'S DECLARATION	iv
	DED	DICATION	v
	ACK	NOWLEDGEMENT	vi
	ABS	TRACT	vii
	ABS	TRAK	viii
	TAB	LE OF CONTENT	ix
	LIST	OF FIGURES	xiv
	LIST	T OF TABLES	xvi
	LIST	OF APPENDIX	xvii
CHAPTER I	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	2
	1.3	Objectives	3
	1.4	Scope of Studies	4
CHAPTER II	LIT	FRATURF REVIEW	5
			5
	2.1	Electrochemical Theory of Corrosion	5
	2.2	Mechanism of Corrosion	7
		2.2.1 Chloride Attack	8

	2.2.2	Carbonation	10
2.3	Corros	ion Damage	11
2.4	Types	of Reinforcement Corrosion	12
	2.4.1	General Corrosion	13
	2.4.2	Pitting Corrosion	13
	2.4.3	Bacterial Corrosion	14
	2.4.4	Concentration Cells	14
	2.4.5	Differential-oxygen Cells	14
	2.4.6	Dissimilar Metal Corrosion	15
2.5	Metho	ds of Prevention	16
	2.5.1	Design for Durability	16
		2.5.1.1 Concrete Technology	17
		2.5.1.2 Cover Thickness	18
	2.5.2	Concrete Technology for Corrosion	
		Prevention	21
		2.5.2.1 Cement	21
		2.5.2.2 Aggregates	22
		2.5.2.3 Mixing Water	22
		2.5.2.4 Admixtures	22
		2.5.2.5 Mix Design, Mixing, Handling,	
		Placement and Compaction	23
	2.5.3	Surface Treatment	25
		2.5.3.1 Organic Coatings	25
		2.5.3.2 Hydrophobic Treatment	25
		2.5.3.3 Cementitious Coatings and Layers	27
	2.5.4	Corrosion Resistant Reinforcement	27
		2.5.4.1 Stainless Steel Rebars	28
		2.5.4.2 Galvanized Steel Rebars	29
		2.5.4.3 Epoxy Coated Rebars	30
2.6	Metho	ds of Repair	31
	2.6.1	Conventional Repair Method	31
		2.6.1.1 Assessment of the Condition of	
		the Structure	32
		2.6.1.2 Removal of Concrete	32

		2.6.1.3 Preparation of Reinforcement	33
		2.6.1.4 Application of Repair Material	33
	2.6.2	Cathodic Protection	34
		2.6.2.1 Application of Cathodic Protection	l
		on Reinforced Concrete Structure	35
		2.6.2.2 Types of Cathodic Protection	36
		2.6.2.2.1 Sacrificial Anode	36
		2.6.2.2.2 Impressed Current	37
		2.6.2.3 Cathodic Protection of Steel in	
		Chloride Contaminated Concrete	38
	2.6.3	Cathodic Prevention	39
	2.6.4	Electrochemical Chloride Removal	40
	2.6.5	Electrochemical Realkalisation	42
2.7	Econo	omic Analysis	43
	2.7.1	Cost of Corrosion	43
	2.7.2	Direct and Indirect Cost	45
	2.7.3	Life Cycle Cost	45
	2.7.4	Cash Flow	46
	2.7.5	Present Value	48
	2.7.6	Annualized Value of the Cash Flow	50
	2.7.7	Potential of Cost Saving Through	
		Corrosion Management	52
	MET	HODOLOGY	53
3.1	Introd	uction	53
3.2	Litera	ture Review	55
3.3	Quest	ionnaire	55

Method of Analysis 56

CHAPTER III

3.4

- 3.4.1Average Index57
- 3.4.2 Mean 57
- 3.4.3 Median 58
- 3.4.4 Mod 58

CHAPTER IV

4.1

4.2

4.3

RESULTS AND DISCUSSION

Fields of Expertise of Respondents

Introduction

Number of Respondent

60

60 60 61

4.4	Experience of Respondents	62
4.5	Cost of Steel in Construction	63
4.6	Corrosion Prevention Methods Available	64
4.7	Frequency of Applying Corrosion	
	Prevention Methods	66
4.8	Corrosion Repair Method Available	68
4.9	Frequency of Applying Corrosion	
	Repair Method	71
4.10	Conclusion	73
	CASE STUDY	74

CHAPTER V	
-----------	--

ASESIUDI

5.1	Introd	uction	74
5.2	Visual	Inspection	76
	5.2.1	Cause of Corrosion of the Deck	77
5.3	Under	water Inspection	79
	5.3.1	Causes of Corrosion on Steel Pilling	79
	5.3.2	Corrosion Mechanism of	
		Steel in Seawater	80
	5.3.3	Zones of Corrosion of Steel Piles	81
		5.3.3.1 Atmospheric Zone	82
		5.3.3.2 Splash Zone	82
		5.3.3.3 Tidal Zone	84
		5.3.3.4 Submerged Zone	85
5.4	Visua	I Inspection on 19 Numbers of Steel Pile	
	With I	Diameter 600mm Between Dolphin C	
	And D	Dolphin D	86
5.5	Concl	usion of The Visual Inspection	87
5.6	Cost o	of Concrete Repair and Structural	

		Strengthening Works	88
	5.7	Comparison of Cost : Then and Present	92
	5.8	Calculation of Present and Future Value of	
		Cost of Corrosion	92
	5.9	Cost Benefit Ratio	94
	5.10	Conclusion of Cost Calculation	95
CHAPTER VI		CONCLUSION AND SUGGESTION	96
	6.1	Introduction	96
	6.2	Conclusion	97
		6.2.1 Corrosion Management Program	97
		6.2.2 Methods of Corrosion Prevention	100
		6.2.2.1 Design for Durability	100
		6.2.2.2 Concrete Technology	101
		6.2.2.3 Surface Treatment	101
		6.2.2.4 Corrosion Resistant Rebar	102
	6.3	Cost-Benefit Ratio	102
	6.4	Problems in Corrosion Management	103
	6.5	Suggestions	104

REFERENCES

106

LIST OF FIGURES

FIGURES NO.	TITLE	PAGE
2.1	The anodic and cathodic reactions	6
2.2	The corrosion reactions on steel	7
2.3	The breakdown of the passive layer and	
	recycling chlorides	9
2.4	Chloride attack and spalling of concrete	10
2.5	Rust growth forcing steel and concrete apart	12
2.6	Pitting corrosion in a freely corroding bar	13
2.7	Concentration and differential-aeration cells	
	in concrete	15
2.8	Dissimilar metal corrosion	16
2.9	Sacrificial anode protection	37
2.10	Impressed current protection	38
2.11	Mechanism of cathodic prevention	40
2.12	Principle reactions involved in chloride extraction	41
2.13	Mechanism of electrochemical realkalization	42
2.14	Principle of electrochemical realkalization	43
3.1	Methodology Flowchart	54
4.1	Numbers of collected questionnaires	61
4.2	Fields of expertise of the respondents	62
4.3	Working experience of respondents	62
4.4	Cost of steel in construction	63
4.5	Level of familiarity of corrosion prevention methods	65
4.6	Frequency of applying corrosion prevention method	s 67
4.7	Familiarity of corrosion repair method	70

Frequency of applying corrosion repair method	72
View of the deck and steel pilling	75
Tracks of corrosion along the reinforcement	
arrangement.	76
Concrete cover spalling off from corroded rebars.	77
Concrete cover was seen disintegrated from beams	78
Underwater inspection.	79
Typical corrosion regions of a steel pile	
in marine environment.	81
Corrosion at atmospheric zone	82
Corrosion at splash zone	83
Corrosion at tidal zone	84
Corrosion at submerged zone	85
Typical corrosion management program	99
	Frequency of applying corrosion repair method View of the deck and steel pilling Tracks of corrosion along the reinforcement arrangement. Concrete cover spalling off from corroded rebars. Concrete cover was seen disintegrated from beams Underwater inspection. Typical corrosion regions of a steel pile in marine environment. Corrosion at atmospheric zone Corrosion at splash zone Corrosion at tidal zone Corrosion at submerged zone Typical corrosion management program

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Order of Metal in Galvanic Series	15
2.2	Recommended Choice of Limiting Values of	
	Concrete Composition in Relation to Exposure	
	Classes According To EN 20	18
2.3	Concrete Cover Thickness in Relation To	
	Diameter of Rod	19
2.4	Minimum Thickness of Concrete Cover	
	Depending On Environmental Condition	20
4.1	Level of Familiarity of Corrosion	
	Prevention Methods	64
4.2	Frequency of Applying The Following	
	Prevention Methods	67
4.3	Level of Familiarity of Corrosion Repair Methods	69
4.4	Frequency of Applying The Following	
	Repair Methods	71

LIST OF APPENDIX

APPENDIX NO. DESCRIPTION PAGE

1 Questionnaire

108

CHAPTER I

INTRODUCTION

1.1 Introduction

Corrosion is a natural process. The problem started as soon as human started digging the ores. It terrorized industries that have the application of steel ranging from chemical plant, power plant and agricultural sector. However, corrosion that takes place in construction industry is the most critically acclaimed as it involves the lives of human being living under these structures.

Corrosion of rebars in concrete structure is a major problem in the construction industry. Corrosion is generally caused by chloride attack and carbonation which are acidic reaction. Concrete which contains microscopic pores with high concentration of soluble calcium, sodium and potassium oxides are highly alkaline. Ironically, alkalinity is the opposite of acidic. Under high alkalinity condition in concrete, a layer of passive protection would form on the steel surface. A passive layer is a dense, impenetrable film, which if fully established and maintained, prevent further corrosion of steel.

However, as mentioned above, two processes can break down the passivating environment in concrete, one is chloride attack while the other one is carbonation. Therefore, the passive layer is not always maintained. It was reported that corrosion of metal cost the U.S economy some near \$300 billion per year as published by National Association of Corrosion Engineer (NACE). As a general statement, the cost of combating corrosion would keep on growing as long as the country has the capacity to develop. Therefore, it shows that a proper system is very much in need to manage to rising problem of corrosion.

1.2 Problem statement

Concrete is strong in compression but weak in tension. Based on this statement, other material has been introduced to the manufacturing of concrete in hoping to increase the tensile strength of it. Thus, the term of reinforced concrete has been created. Reinforced concrete can be defined as introduction of steel in concrete structure purely for the purpose of strengthening its tensile properties.

Reinforced concrete is a very versatile structure as it can be moulded into variety of shapes. Therefore, application of reinforced concrete is usually very wide in the construction industry. Ranging from substructure to super structure, from beams to columns, from slabs to walls, reinforced concrete can be found in almost every member of the structure.

However, one common problem face by engineers around the globe is that reinforced concrete is an aging material. In other word, the steel will corrodes as time goes by. The severe environment condition in tropical region as well as the process of deicing of saltwater in seasonal countries has led to shorter lifetime of a structure. Right after planting of metal into concrete, nature sets the reversing process. Of all that, it has prompted one common interest, to study, understand and tackle the problems of corrosion. Realizing the damage and potential danger caused by corrosion, researchers have taken the initiative to identify the mechanism of corrosion and thus introduce methods of curing for it. The methods that are commonly practiced will be further discussed in this study.

As the saying of "prevention is better than cure" goes by, it is wise to design and construct the structure accordingly to avoid any inconvenience.

Corrosion is actually a slow process and can be detected for further repair before causing any damage. Failure to do so would only cause expensive economical as well as physical damage to the structure itself. For that, overlooking the maintenance aspect of a structure could prove to be a costly error.

1.3 Objectives

Engineered structures are built to serve with a purpose. However, all members of a structure undergoes the process of aging. For instance, the most significant aging process is the corrosion of steel in reinforced concrete member.

Corrosion management includes all activities throughout the service life of the structure that are performed to mitigate corrosion, to repair corrosion-induced damage and to replace the structures that are badly corroded. All these activities are governed by large sum of money and are characterized by annual cost. These factors had triggered the need for a proper and systematic ways of conducting corrosion management for reinforced concrete structures ensure maximum profit. In this study, the main objectives are:

- 1. To study the corrosion management programs.
- 2. To identify the methods of corrosion prevention.

- 3. To evaluate the cost-benefit ratio of the management program.
- 4. To identify the problems in corrosion management.

1.4 Scope of studies

Among the methods that will be carried out to determine the current trend in Malaysia are as follow:

- a. Interviews with local contractors, consultants and developers.
- b. Survey, in the form of questionnaire to be handed out to local contractors, consultants and developers.
- c. Internet research.
- d. Application of cost analysis to determine the cost-benefit ratio for corrosion prevention program.
- e. Reference of previous studies.