EMPIRICAL CORRELATION FOR ESTIMATION OF UNSATURATED SOIL SHEAR STRENGTH

NOR HAFIZAH HANIS BINTI ABDULLAH

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / PO	OSTGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name : NOR HAF	IZAH HANIS BT ABDULLAH
Date of birth : <u>11 NOVEN</u>	MBER 1985
	AL CORRELATION FOR ESTIMATION OF UNSATURATED
Academic Session : 2010/201	<u>1-2</u>
I declare that this thesis is classif	fied as :
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
	I agree that my thesis to be published as online open access (full text)
I acknowledged that Universiti	Teknologi Malaysia reserves the right as follows:
2. The Library of Universiti T	y of Universiti Teknologi Malaysia. Teknologi Malaysia has the right to make copies for
the purpose of research3. The Library has the right exchange.	t to make copies of the thesis for academic
3. The Library has the right	-
3. The Library has the right	t to make copies of the thesis for academic
3. The Library has the right exchange.	t to make copies of the thesis for academic Certified by :
3. The Library has the right exchange.	t to make copies of the thesis for academic Certified by : SIGNATURE OF SUPERVISOR ASSOC. PROF DR. NURLY GOFAR

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

" I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil-Geotechnics)"

Signature	:	
Name	:	ASSOC. PROF. DR. NURLY GOFAR
Dare	:	20 MAY 2011

EMPIRICAL CORRELATION FOR ESTIMATION OF UNSATURATED SOIL SHEAR STRENGTH

NOR HAFIZAH HANIS BINTI ABDULLAH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Geotechnics)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > MAY 2011

I declare that this project report entitled "*Empirical Correlation For Estimation of Unsaturated Soil Shear Strength*" is the result of my own research except cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature:....Candidate:NOR HAFIZAH HANIS BINTI ABDULLAHDate:20 MAY 2011

Bismillahirrahmanirrahim tabarakallahumma wa bihamdihi Special dedicated to my beloved husband, mother, father, sisters and brothers...

ACKNOWLEDGEMENT

In the first place, very special thanks goes to my supervisor, Associate Professor Dr. Nurly Gofar, whose passionate heart guiding me and supplying me with the required data for the completion of this project report.

I wish to convey my gratitude to all technical staffs in Geotechnics Laboratory, especially Mr. Zulkifli for his helping hand in completing my project. This study also would not have been complete without the conditional and unconditional contribution from all the lecturers and course mates in Department of Geotechnics, Civil Engineering Faculty,UTM especially my team-mate Syaiful Marzuki.

Finally yet importantly, I would like to thank my dear husband, Syamsuzzaman Abdul Hamid, my parents Abdullah Awang and W. Razan W. Ibrahim, siblings and friends for their endless love and blessings.

ABSTRACT

Most land surface in Malaysia is covered by residual soil with relatively deep ground water elevation, thus the soil presence in an unsaturated condition. Stability of slopes in such soil is governed by the shear strength of unsaturated soil, for which matric suction caused by the surface tension of the capillary water in soil pores plays an important role. The focus of this project is to study the relationship between the matric suction and the shear strength. Five empirical models are adopted to predict the shear strength of unsaturated soil by utilizing the saturated shear strength parameters and soil water characteristic curve of two soils retrieved from two sites in UTM campus i.e finegrained (Kolej 12) and coarse-grained (Balai Cerapan). Previous studies suggested that the effect of suction is most significant within the transition zone of SWCC curves. In this case, the transition zone is 10 - 80 kPa for Kolej 12 soil and 2 - 60 kPa for Balai Cerapan soil. The saturated shear strength parameters for Kolej 12 and Balai Cerapan are $(c' = 20 \text{ kPa}; \phi' = 27^\circ)$ and $(c' = 22 \text{ kPa}; \phi' = 33^\circ)$ respectively. Analysis by empirical correlation also show that for fined grained soil, the shear strength increases non-linearly with suction. In this case, ϕ^b varies between $18.2 - 13.97^\circ$. On the other hand, linear increment of shear strength is depicted by coarse grained soil with constant ϕ^b of 26.37°.

ABSTRAK

Kebanyakan tanah di permukaan bumi Malaysia diliputi oleh tanah baki, yang mana tanah baki ini mempunyai aras air bawah tanah yang dalam, sekaligus menjadikannya sebagai tanah tak tepu. Kestabilan cerun bagi tanah tersebut adalah bergantung kepada kekuatan ricih tanah tak tepu, yang mana daya sedutan yang disebabkan oleh tekanan tegangan permukaan kapilari dalam liang zarah tanah, memainkan peranan yang sangat penting. Tumpuan projek ini adalah untuk mengkaji hubungan di antara daya sedutan dan kekuatan ricih. Lima model empirikal telah digunakan untuk mendapatkan kekuatan ricih tanah tak tepu dengan menggunakan parameter kekuatan ricih tanah tepu dan lengkungan ciri tanah-air bagi dua jenis tanah yang diperolehi dari dua tapak di kampus UTM iaitu tanah butiran halus (Kolej 12) dan tanah butiran kasar (Balai Cerapan). Para pengkaji terdahulu mencadangkan bahawa kesan daya sedutan paling utama di zon peralihan dalam lengkungan ciri tanah-air. Dalam kes ini, zon peralihan adalah 10 – 80 kPa untuk tanah Kolej 12 dan 2 – 60 kPa untuk tanah Balai Cerapan. Parameter kekuatan ricih tanah tepu untuk Kolej 12 dan Balai Cerapan adalah masing-masing ($c' = 20 \text{ kPa}; \phi' = 27^{\circ}$) dan ($c' = 22 \text{ kPa}; \phi' = 33^{\circ}$). Analisis dari perkaitan empirikal juga menunjukkan bahawa untuk tanah butiran halus, kekuatan ricih meningkat secara tidak lelurus dengan daya sedutan. Bagi kes inin, ϕ^b berada di antara 18.2° - 13.97°. Namun, sebaliknya pula bagi tanah butiran kasar, yang mana peningkatan kekuatan ricih adalah lelurus dengan daya sedutan, iaitu nilai ϕ^b bersamaan dengan 26.37°.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE

TIT	FLE OF PROJECT	
DEC	CLARATION	ii
DED	DICATION	iii
ACK	KNOWLEDGEMENTS	iv
ABS'	TRACT	V
ABS'	TRAK	vi
TAB	ELE OF CONTENTS	vii
LIST	Γ OF TABLES	Х
LIST	Γ OF FIGURES	xi
LIST	Γ OF SYMBOLS	xiv
LIST	Γ OF APPENDICES	xvii
INTI	RODUCTION	
1.1 B	Background of Study	1
1.2 A	Aim and Objective of Study	3
1.3 S	cope and Limitation of Study	4
LITI	ERATURE REVIEW	
2.1	Unsaturated Soil	5
2.2	Soil Moisture Relationship	8
2.3	Shear Strength	11

1

2

2.4	Relation	onship Between Soil Moisture	
	Charac	cteristics And Shear Strength	16
2.5	Determ	nination of Unsaturated Soil Shear Strength	19
	2.5.1	Laboratory Experiments	19
	2.5.2	Empirical Procedures	24

3 RESEARCH METHODOLOGY

3.1	Introd	uction	30
3.2	Sampl	le Collection	32
3.3.	Saturated Shear Strength Test		37
	3.3.1	Consolidated Undrained (CU) Test	37
	3.3.2	Consolidated Drained (CD) Direct	
		Shear Test	39
3.4	Empir	rical Procedure	42
	3.4.1	Interpretation of Soil Water	
		Characteristic Curve	42
	3.4.2	Empirical Models for Determination	
		of Unsaturated Soil Shear Strength	43

4 **RESULTS AND DISCUSSIONS**

5

4.1	Soil Basic Properties	48
4.2	Possible Range of Suction	49
4.3	Shear strength of Saturated Soil	52
4.4	Shear Strength of Unsaturated soil based on	
	Empirical Procedures	57
4.5	Discussions	63

CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	65
5.2	Recommendations	66

REFERRENCES

Appendices A-C

67

71

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Values of ϕ^b obtained by previous researchers for	
	Malaysian residual soils	15
2.2	Summary of evaluation of five empirical procedures	
	used to predict unsaturated soil shear strength	
	(After Vanapalli and Fredlund, 2000)	28
3.1	Empirical models used to predict shear strength of	
	unsaturated soil from Kolej 12 and Balai Cerapan	47
4.1	Properties of soil at selected sites	49
4.2	Properties of soil extracted from SWCC	50
		20
4.3	Saturated shear strength parameters for both sites	57

LIST OF FIGURES

TITLE

FIGURE NO.

2.1	Illustration of the unsaturated soil zone (vadose zone) on a regional and local basis (Fredlund, 2006)	6
2.2	Negative pore-water pressure distribution in vadose zone	7
2.3	Typical soil water characteristic curve showing zones of desaturation (Fredlund, 2006)	10
2.4	Extended Mohr-Coulomb failure envelope for unsaturated soil	14
2.5	Variation of shear strength with matric suction in three diffent stages of soil water characteristic curve (Vanapalli <i>et al.</i> , 1996)	17
2.6	Relationship between soil water characteristic curve and shear strength variation for typical soil (Vanapalli <i>et al.</i> , 1996)	18
2.7	Suction controlled triaxial apparatus (Bishop and Donald, 1961)	21

PAGE

2.8	Suction controlled shear box (Gan et al., 1988)	22
2.9	Direct shear box along with soil specimen in the desiccators to achieve target value of high suction (After Nishimura, 2009)	23
3.1	Flow chart of research methodology	31
3.2	(a) Hilly slope at Kolej 12, UTM(b) Yellowish coloration of typical silty clay residual soil	32
3.3	(a) Hilly slope at Balai Cearapan, UTM(b) Dark brownish colour of residual soil with visible coarse particles	33
3.4	Typical plot of compaction curve and zero-air-void line	35
3.5	Hydraulic compression machine to extrude the soil specimen	36
3.6	Direct shear test equipment with computerized system data Measurement	37
3.7	Square-root-time of fitting method	41
3.8	A sample plot of graphical method for determining the <i>a</i> , <i>n</i> , <i>m</i> and ψ parameters (After Fredlund and Xing, 1994)	44
4.1	Soil water characteristic curves along with its characteristic for both sites	51
4.2	Settlement vs. time curves for determining the shearing rate from three series of undrained test for sample Kolej 12	53

4.3	Settlement vs. time curves for determining the shearing rate from three series of undrained test for sample Balai Cerapan	54
4.4	(a) Shear-displacement(b) volume change-displacement curves for CD test(sample Kolej 12)	55
4.5	(a) Shear-displacement(b) volume change-displacement curves for CD test(sample Balai Cerapan)	56
4.6	Strength envelopes for CD shear box test of both sites	57
4.7	Comparison of shear strength using five different models within the transition zone for Kolej 12 soil	58
4.8	Comparison of shear strength using five different models within the transition zone for Balai Cerapan soil	59
4.9	Comparison of predicted and measured shear strength for Balai Cerapan (Tan, 2006) soil based on one model with different approach	60
4.10	Plot for the graphical solution of the four parameters <i>a</i> , <i>n</i> , <i>m</i> and ψ for both sites	61

LIST OF SYMBOLS

а	-	Suction related to the air-entry value of the soil
a_{ω}	-	Normalized area of water
<i>c</i> ′	-	Effective cohesion
C_c	-	Coefficient of curvature
C_u	-	Coefficient of uniformity
$C(\psi_i)$	-	Correction factor
d_f	-	Estimated horizontal displacement at failure
d_r	-	Shearing or displacement rate
D _r	-	Relative density
<i>D</i> ₁₀	-	Particle size for which 10% of particles are finer
D ₃₀	-	Particle size for which 30% of particles are finer
<i>D</i> ₆₀	-	Particle size for which 60% of particles are finer
е	-	Void ratio
e_{max}	-	Maximum void ratio at loosest state
e_{min}	-	Minimum void ratio at densest state
G_s	-	Specific gravity
k	-	Saturated permeability
m	-	Soil parameter related to the residual water content
n	-	Soil parameter related to slope at the inflection point
RH	-	Relative humidity
S	-	Slope of the tangent line on SWCC
S	-	Degree of saturation
t_f	-	Total estimated elapsed time to failure

<i>t</i> ₅₀	-	Time required to achieve 50% consolidation
t ₉₀	-	Time required to achieve 90% consolidation
u _a	-	Pore-air pressure
u_{ω}	-	Pore-water pressure
γ_b	-	Bulk unit weight
ζ	-	Slope of the linear function of SWCC
η	-	Porosity
$ heta_b$	-	Volumetric water content at air-entry value
$ heta_i$	-	Volumetric water content at inflection point
$ heta_r$	-	Residual volumetric water content
$ heta_s$	-	Saturated volumetric water content
$ heta_{\omega}$	-	Volumetric water content
Θ	-	Normalized water content
κ	-	Fitting parameter
ξ	-	Intercept on abscissa of SWCC
π	-	Osmotic suction
$ ho_d$	-	Dry density
σ_{f}	-	Effective stress at failure
σ_n	-	Normal stress
σ'	-	Effective normal stress
τ	-	Shear stress
$ au_f$	-	Shear strength of soil at failure
ϕ^b	-	Angle of shearing resistance with respect to suction
ϕ'	-	Angle of shearing resistance
χ	-	Chi parameter dependent on degree of saturation
ψ	-	Total suction
ψ_i	-	Suction at inflection point
ψ_p	-	Intercept of the tangent line on the suction axis
ψ_r	-	Suction value corresponding to residual water content
ω	-	Gravimetric water content

$(u_a - u_w)$	-	Matric suction
$(u_a - u_w)_b$	-	Matric suction at air-entry value
$(u_a - u_w)_f$	-	Matric suction in the specimens at failure
$(u_a - u_\omega)_r$	-	Matric suction at residual
$(\sigma_n - u_a)$	-	Net normal stress with reference to air pressure
$(\sigma_n - u_\omega)$	-	Effective normal stress

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Consolidation Stage Result during CU Direct					
	Shear Test	71				
В	CD Direct Shear Strength Test Results	75				
С	Empirical Model To Predict Shear Strength	81				

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Rainfall-induced slope failures are common geotechnical hazards in Malaysia. Every year, there are innumerable small to catastrophic slope failures that cumulatively impose great impact to the society. The high occurrences of the slope failures in Malaysia can essentially be attributed in part to two major factors, i.e. the intense and frequent downpours, and the natural characteristics of residual soil.

The average annual rainfall amount in Malaysia is considerably high of more than 2000 mm with most of the annual precipitation falls during the monsoon seasons (Dan'azumi *et al.*, 2010). In general, the monsoon rainfall can be characterized by long duration and high daily rainfall intensity, while the typical tropical rainfall has short duration (less than one day) and high hourly rainfall intensity. The slope failures are usually triggered by the precipitation regimes, represented by either a short and intense rainstorm or a prolonged light rainfall, depending on the characteristics of the potentially unstable material.

Residual soil, which is the product of intense weathering of granite or sedimentary rocks in tropical climate, covers 75% of the land surface in Malaysia. The residual soil is naturally in an unsaturated condition because the ground water elevation is relatively deep (Rahardjo *et al.* 1993). Stability of slope in such soils is notably governed by the shear strength of unsaturated soil, for which suction plays an important role. High degree of saturation induced by rainfall infiltration will diminish the matric suction; hence reducing the shear strength of unsaturated soils.

Recent studies of unsaturated soils shear strength has gained widespread attention among researchers due to increasing concern towards understanding the shear strength behaviour with regard to matric suction. Numerous physical and theoretical models have been developed in the past 50 years owing to the needs to predict the highly complex shear behaviour of unsaturated soil. Experimental works, despite of imposing extra time consuming and relatively higher expenses, are evidently providing the most appropriate mean for measuring the shear strength of unsaturated soils. Mostly adopted measuring devices are direct shear box and triaxial cell with several modifications to implement the effect of suction on soil samples (Gan *et al.* (1988), Rahardjo *et al.* (1995), Taha *et al.* (2000), and Mohamed *et al.* (2006)).

In the absence of laboratory data, several empirical models have also been proposed as an alternative tool in prediction of unsaturated soil shear strength, for instance by Fredlund *et al.* (1996), Vanapalli *et al.* (1996), Oberg and Salfors (1997), Khallili and Khabaz (1998) and Bao *et al.* (1998). These empirical approaches employ the soil water characteristic curve (SWCC), which is a fundamental hydraulic property of unsaturated soil relating the volumetric water content (θ_{ω}) to matric suction (ψ), and saturated shear strength parameters in developing their models. Soil water characteristic curve can be established using laboratory works or can be predicted using empirical model.

This project deals specifically with empirical model to predict the shear strength of unsaturated soil as a function of matric suction by making use of saturated shear strength parameters and soil water characteristic curve. The saturated shear strength parameters were obtained from consolidated-drained direct shear test and parameters related to soil water characteristics curve were collected from existing data. Five empirical models were adopted for the prediction of shear strength under different suction values. The results were then analyzed and several merits and drawbacks are discussed.

1.2 Aim and Objectives of Study

The aim of this project is to predict the unsaturated shear strength of tropical residual soil obtained from two different sites at Universiti Teknologi Malaysia campus with respect to suction. Several empirical models gathered from literature were adopted. To achieve this aim, several objectives are outlined as below:

- 1) To obtain saturated shear strength parameters of the soil samples by direct shear test under consolidated drained (CD) condition.
- To study the relationship between shear strength and suction by utilizing soil water characteristic curves.
- To predict the shear strength of the corresponding soil in unsaturated condition by empirical methods.

1.3 Scope and Limitation of Study

The results are restricted to soil collected from two sites at Universiti Teknologi Malaysia campus where the soil water characteristic curve of the soil has been tested in the previous research. Direct shear test under consolidated drained condition will be performed following ASTM D3080-04 procedure to get the saturated shear strength parameters. Empirical procedures proposed by Fredlund *et al.* (1996), Vanapalli *et al.* (1996), Oberg and Salfors (1997), Khallili and Khabaz (1998) and Bao *et al.* (1998) are utilized in this project. Following that, parameters required in the empirical model will be extracted from the soil water characteristic curve. Finally, the predicted shear strength using empirical model will be compared with available laboratory data.